【C++题解】 1462. 小明的游泳时间

问题:1462. 小明的游泳时间

类型:整数运算


题目描述:

伦敦奥运会要到了,小明在拼命练习游泳准备参加游泳比赛。
这一天,小明给自己的游泳时间做了精确的计时(本题中的计时都按 24 小时制计算),它发现自己从 a 时 b 分一直游泳到当天的 c 时 d 分。
请你帮小明计算一下,它这天一共游了多少时间呢?小明游的好辛苦呀,你可不要算错了哦。

输入:

一行内输入 4 个整数,分别表示a,b,c,d 。

输出:

一行内输出 2 个整数 e 和 f ,用空格间隔,依次表示小明这天一共游了多少小时多少分钟。其中表示分钟的整数 f应该小于 60 。

样例:

输入:

12 50 19 10

输出:

6 20

### Flink Lookup Join 的使用方法及示例 #### 什么是 Lookup Join? Lookup Join 是 Apache Flink 提供的一种用于流数据与维表数据关联的操作方式。它允许将实时流中的事件与存储在外接数据库或其他外部系统的静态或准静态数据进行匹配和富化[^2]。 #### Lookup Join 的特点 - **实时性强**:Lookup Join 能够快速响应流数据的变化并即时获取对应的维表数据。 - **内存优化**:相比于传统的 JOIN 操作,Lookup Join 不会将整个维表加载到内存中,而是通过外键查询的方式按需读取所需数据。 - **延迟低**:由于只在需要时才访问维表,因此可以显著降低计算资源消耗以及延迟。 - **灵活扩展**:支持多种类型的外部系统作为维表来源,例如 MySQL、HBase 或 Kafka 等[^4]。 #### Lookup Join 的基本语法 以下是 Flink SQL 中 Lookup Join 的典型语法结构: ```sql SELECT t1.key, t1.value, t2.attribute FROM stream_table AS t1 JOIN dimension_table FOR SYSTEM_TIME AS OF t1.proctime AS t2 ON t1.join_key = t2.join_key; ``` 其中: - `stream_table` 表示输入的流数据表; - `dimension_table` 表示维表(通常是来自外部系统的静态数据); - `FOR SYSTEM_TIME AS OF t1.proctime` 定义了基于处理时间时间属性; - `t1.join_key = t2.join_key` 是两表之间的连接条件[^3]。 #### 示例代码 假设我们有一个订单流 (`order_stream`) 和一个用户息维表 (`user_dim`),目标是将每笔订单与其对应用户的姓名和地址进行关联。 ##### 创建表定义 首先,在 Flink SQL CLI 或其他环境中创建所需的表结构: ```sql -- 订单流表 (Stream Table) CREATE TABLE order_stream ( order_id BIGINT, user_id BIGINT, amount DECIMAL(10, 2), proctime AS PROCTIME() -- 添加处理时间列 ) WITH ( 'connector' = 'kafka', 'topic' = 'orders_topic', 'properties.bootstrap.servers' = 'localhost:9092', 'format' = 'json' ); -- 用户维表 (Dimension Table) CREATE TABLE user_dim ( user_id BIGINT PRIMARY KEY NOT ENFORCED, name STRING, address STRING ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://localhost:3306/flink_db', 'table-name' = 'users', 'username' = 'root', 'password' = 'password' ); ``` ##### 执行 Lookup Join 查询 接下来编写实际的 Lookup Join 查询语句: ```sql SELECT o.order_id, o.user_id, o.amount, u.name, u.address FROM order_stream AS o JOIN user_dim FOR SYSTEM_TIME AS OF o.proctime AS u ON o.user_id = u.user_id; ``` 此查询的作用是从 `order_stream` 流中提取每一笔订单,并通过 `user_id` 字段找到其对应的用户名字和地址息。 #### 注意事项 1. 维表通常具有较高的更新频率,但在大多数情况下仍可视为相对稳定的数据集。 2. 如果维表非常大,则可能需要考虑分区策略或者缓存机制来提升性能。 3. 对于某些特殊场景下的高并发请求,建议评估底层存储系统的负载能力以避免瓶颈问题发生。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月别枝惊鹊丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值