【NOI-题解】1137 - 纯粹素数1258 - 求一个三位数1140 - 亲密数对1149 - 回文数个数

一、前言

欢迎关注本专栏《C++从零基础到信奥赛入门级(CSP-J)》

本章节主要对自定义函数问题进行讲解,包括《1137 - 纯粹素数》《1258 - 求一个三位数》《1140 - 亲密数对》《1149 - 回文数个数》题目。

二、问题

问题:1137 - 纯粹素数

类型:自定义函数


题目描述:

纯粹素数是这样定义的:一个素数,去掉最高位,剩下的数仍为素数,再去掉剩下的数的最高位,余下的数还是素数。这样下去一直到最后剩下的个位数也还是素数。

求出所有小于 3000 的四位的纯粹素数。

输入:

输出:

按从小到大的顺序输出若干个纯粹素数,每行一个。

在这里插入图片描述


1.分析问题

  1. 已知:所有小于3000的四位数。
  2. 未知:求出所有小于 3000 的四位的纯粹素数。
  3. 关系: 纯粹素数:一个素数,去掉最高位,剩下的数仍为素数,再去掉剩下的数的最高位,余下的数还是素数。这样下去一直到最后剩下的个位数也还是素数。

2.定义变量

	//二、定义变量(已知、未知、关系) 
	int t;
	bool isFind;

3.输入数据

无。

4.数据计算

  • isPrime 函数:这个函数用于检测一个整数 p 是否为素数。
    • 首先处理特殊情况:小于等于3的数,其中1不是素数,2和3是素数。
    • 然后排除所有能被2或3整除的数。
    • 最后,从5开始,每次增加6,检查形如 6k ± 1 的数是否能整除 p。这是因为除了2和3外,所有素数都可以表示为 6k ± 1 的形式。
bool isPrime(int p){
	if(p<=3) return p>1;
	
	if(p%2==0 || p%3==0) return false;
	
	for(int i=5;i*i<=p;i+=6){
		if(p%i==0||p%(i+2)==0) return false;
	}
	
	return true;
}


  • reHigh 函数:这个函数用于去掉一个数的最高位。
    • 如果数小于等于9,则返回0(因为已经没有更高位可以去掉了)。
    • 使用模运算和除法来构建新的数,去掉最高位。
int reHigh(int r){	
	if(r<=9) return 0;
	int res=0,mul=1;
	while(r>9){
		res+=r%10*mul;
		r/=10;
		mul*=10;
	}
	return res;
}
  • 遍历从1001到2999之间的所有奇数(因为除了2以外的所有偶数都不是素数)。
    • 对于每个数,检查它及其去掉最高位后的数是否均为素数。
    • 如果是纯粹素数,则输出该数。
//四、根据关系计算
	for(int i=1001;i<3000;i+=2){
		t=i;
		isFind=true;
		while(t){
			if(!isPrime(t)){
				isFind=false;
				break;	
			}
			t=reHigh(t);
		}
		//五、输出未知 
		if(isFind) cout<<i<<endl;
	} 

完整代码如下:

#include<bits/stdc++.h>
using namespace std;

// 检测一个整数是否为素数
bool isPrime(int p){
    // 处理特殊情况:小于等于3的数
    if(p <= 3) return p > 1; // 1不是素数,2和3是素数
    
    // 排除能被2或3整除的数
    if(p % 2 == 0 || p % 3 == 0) return false;

    // 从5开始检查形如 6k ± 1 的数
    for(int i = 5; i * i <= p; i += 6){
        if(p % i == 0 || p % (i + 2) == 0) return false;
    }
    
    return true; // 如果没有找到因子,则p是素数
}

// 去掉一个数的最高位
int reHigh(int r){	
    if(r <= 9) return 0; // 如果只有一个数字,则返回0
    int res = 0, mul = 1;
    while(r > 9){
        res += r % 10 * mul; // 添加最低位数字到结果
        r /= 10; // 移除最低位
        mul *= 10; // 更新乘数
    }
    return res; // 返回去掉最高位后的数
}

int main(){
    // 主循环:遍历所有小于3000的四位数
    for(int i = 1001; i < 3000; i += 2){ // 从1001开始,每次增加2(跳过偶数)
        int t = i;
        bool isFind = true;
        
        // 检查当前数及其去掉最高位后的数是否均为素数
        while(t){
            if(!isPrime(t)){
                isFind = false;
                break; // 如果发现任何一个数不是素数,则退出循环
            }
            t = reHigh(t); // 去掉最高位
        }
        
        // 如果所有去掉最高位后的数均为素数,则输出原始数
        if(isFind) cout << i << endl;
    } 

    return 0; // 程序结束
}

欢迎关注本专栏《C++从零基础到信奥赛入门级(CSP-J)》

问题:1258 - 求一个三位数

类型:自定义函数、简单循环


题目描述:

求这样一个三位数,该三位数等于其每位数字的阶乘之和, 即
abc=a!+b!+c!。n! 表示 n 的阶乘, n!=1×2×3×⋯×n,如:5!=1×2×3×4×5)

输入:

输出:

输出这个数。

在这里插入图片描述


1.分析问题

  1. 已知:所有的三位数。
  2. 未知:找出符合条件的数。
  3. 关系:该三位数等于其每位数字的阶乘之和。

2.定义变量

	//二、定义变量(已知、未知、关系) 
	int g,s,b;

3.输入数据

无。

4.数据计算

  • jc 函数:计算一个整数的阶乘。
    • 输入参数 t 表示要计算阶乘的数。
    • 使用一个循环来计算阶乘。
    • 返回阶乘的结果。
int jc(int t){
	int res=1;
	while(t>1){
		res*=t;
		--t;
	}
	return res;
}
  • 遍历从100到999的所有三位数。
    • 对于每个数 i,获取个位、十位和百位上的数字。
    • 计算每一位数字的阶乘。
    • 检查该数是否等于各位数字的阶乘之和。
    • 如果条件满足,则输出该数,并结束循环。
//四、根据关系计算
	for(int i=100;i<1000;++i){
		
		g=i%10;
		s=i/10%10;
		b=i/100;
		
		g=jc(g);
		s=jc(s);
		b=jc(b);
		
		//五、输出未知
		if(i==g+s+b){
			cout<<i;
			break;
		}
	} 

完整代码如下:

#include<bits/stdc++.h>
using namespace std;

// 计算阶乘的函数
int jc(int t){
    int res = 1;
    while (t > 1) {
        res *= t;
        --t;
    }
    return res;
}

int main(){
    // 一、分析问题
    // 已知:所有的三位数。
    // 未知:找出符合条件的数。
    // 关系: 该三位数等于其每位数字的阶乘之和。

    // 二、定义变量(已知、未知、关系)
    int g, s, b; // 个位、十位、百位上的数字

    // 三、输入已知
    // 四、根据关系计算
    for (int i = 100; i < 1000; ++i) { // 遍历所有的三位数
        g = i % 10; // 获取个位数字
        s = i / 10 % 10; // 获取十位数字
        b = i / 100; // 获取百位数字

        // 计算每一位数字的阶乘
        g = jc(g);
        s = jc(s);
        b = jc(b);

        // 五、输出未知
        if (i == g + s + b) { // 如果该数等于各位数字的阶乘之和
            cout << i; // 输出该数
            break; // 找到一个符合条件的数后,结束循环
        }
    }

    return 0; // 程序结束
}

欢迎关注本专栏《C++从零基础到信奥赛入门级(CSP-J)》

问题:1140 - 亲密数对

类型:自定义函数


题目描述:

键盘输入 N ,N 在 2 至 2000 之间,求 2 至 N 中的亲密数对,就是 A 的因子和等于 B ,B 的因子和等于 A ,且 A≠B 。
如 48 和 75 是亲密数对。48 的因子和为 2+3+4+6+8+12+16+24=75 ,而 75 的因子和为 3+5+15+25=48 。

输入:

只有一行,为一个整数 N ( 2≤N≤2000 )

输出:

输出若干行,每行两个整数(用一个空格隔开)。

样例1:

输入:

200

输出:

48 75
75 48
140 195
195 140

样例2:

输入:

150

输出:

48 75
75 48

在这里插入图片描述


1.分析问题

  1. 已知:一个整数N ,N 在 2 至 2000 之间;
  2. 未知:求 2 至 N 中的亲密数对;
  3. 关系:A 的因子和等于 B ,B 的因子和等于 A ,且 A≠B 。

2.定义变量

  • n表示输入的最大值,t用于临时存储因子和。
	//二、定义变量(已知、未知、关系)
	int n,t; 

3.输入数据

  • 输入n的值
	//三、输入已知
	cin>>n;

4.数据计算

  • 定义了一个名为sumYz的函数,用来计算小于或等于s的所有真因子之和。
    • 函数内部使用一个循环来找到所有的因子,并累加它们的值。
    • 如果一个因子的平方等于s,说明这个因子被重复计算了两次,需要减去一次。
    • 返回所有因子的累加和。
int sumYz(int s){
	int res=0;
	
	for(int i=2;i*i<=s;++i){
		if(s%i==0) res+=i+s/i;
		if(i==s/i) res-=i;
	}
	
	
	return res;
}
  • 使用一个循环遍历从2到n的所有整数。
    • 对于每一个整数i,调用sumYz函数计算它的因子和t。
    • 检查t是否在2到n的范围内,同时检查i是否是t的因子和,并且i不等于t。
    • 如果满足条件,则输出这对亲和数。
	//四、根据关系计算
	for(int i=2;i<=n;++i){
		
		t=sumYz(i);
		//五、输出未知 
		if(t<=n&&sumYz(t)==i&&i!=t) cout<<i<<" "<<t<<endl;
		
	}

完整代码如下:

#include<bits/stdc++.h> // 包含所有标准C++库
using namespace std;

// 计算一个整数s的所有真因子之和
int sumYz(int s){
    int res = 0; // 初始化结果为0
    
    // 遍历所有可能的因子
    for(int i = 2; i * i <= s; ++i){
        if(s % i == 0){ // 如果i是s的一个因子
            res += i + s / i; // 将i及其对应的配对因子加入结果
        }
        if(i == s / i) // 如果i的配对因子与i相同(即s是完全平方数)
            res -= i; // 避免重复计数
    }
    
    return res; // 返回所有真因子之和
}

int main(){
    // 一、分析问题
    // 已知:一个整数N, N在2至2000之间;
    // 未知:求2至N中的亲和数对;
    // 关系: A的因子和等于B,B的因子和等于A,且A≠B。
    
    // 二、定义变量(已知、未知、关系)
    int n, t; // n表示输入的最大值,t用于临时存储因子和
    
    // 三、输入已知
    cin >> n; // 输入n的值
    
    // 四、根据关系计算
    for(int i = 2; i <= n; ++i){
        
        t = sumYz(i); // 计算i的所有真因子之和
        
        // 五、输出未知
        // 检查t是否也在2至n的范围内,并且i和t互为亲和数
        if(t <= n && sumYz(t) == i && i != t)
            cout << i << " " << t << endl; // 输出这对亲和数
    }
    
    return 0; // 主函数结束
}

欢迎关注本专栏《C++从零基础到信奥赛入门级(CSP-J)》

问题:1149 - 回文数个数

类型:自定义函数、2015江苏省青少年信息学奥林匹克竞赛复赛


题目描述:

一个正整数,正读和反读都相同的数为回文数。

例如22 , 131 , 2442 , 37073 , 6 ,… 所有 1 位数都是回文数。

给出一个正整数 n ( 1≤n≤10000 ),求出 1,2,…,n 之中(包括 1 和 n )的回文数的个数。

输入:

任意给定一个正整数 n ( 0<n≤10000 )

输出:

一个正整数,表示[ 1,n ]之间的回文数的个数。

样例:

输入:

325

输出:

41

在这里插入图片描述


1.分析问题

  1. 已知:一个正整数 n ( 0<n≤10000 );
  2. 未知:求出 1,2,…,n 之中(包括 1 和 n )的回文数的个数;
  3. 关系:一个正整数,正读和反读都相同的数为回文数。

2.定义变量

  • 定义变量n用于存储用户输入的最大值,c用于计数回文数的数量。
	//二、定义变量(已知、未知、关系) 
	int n,c=0;

3.输入数据

  • 使用cin从用户获取输入值n。
	//三、输入已知
	cin>>n;

4.数据计算

  • 判断一个整数h是否为回文数。
    • 初始化t为h的副本,r为0。
    • 使用一个循环反转h的数字。
    • 如果反转后的数字等于原数字,则返回true。
bool isHw(int h){
	int t=h,r=0;
	while(t){
		r=r*10+t%10;
		t/=10;
	}
	
	if(h==r) return true;
	
	return false;
}
  • 使用一个循环从1到n遍历所有整数。
  • 对于每个整数i,如果isHw(i)返回true,则增加计数器c。
	//四、根据关系计算
	for(int i=1;i<=n;++i){
		if(isHw(i)) ++c;
	}

5.输出结果

  • 最后,使用cout输出回文数的总数c。
	//五、输出未知 
	cout<<c;

完整代码如下:

#include<bits/stdc++.h> // 包含所有标准C++库
using namespace std;

// 判断一个整数是否为回文数
bool isHw(int h){
    int t = h, r = 0; // 初始化反转后的数字r为0,t用于存储原始数字的副本
    
    // 反转数字
    while(t){
        r = r * 10 + t % 10; // 反转操作
        t /= 10; // 去除最低位
    }
    
    // 检查原数字和反转后的数字是否相等
    if(h == r) return true; // 如果相等,则是回文数
    
    return false; // 否则不是回文数
}

int main(){
    // 一、分析问题
    // 已知:一个正整数 n ( 0<n≤10000 );
    // 未知:求出 1,2,…,n 之中(包括 1 和 n )的回文数的个数;
    // 关系: 一个正整数,正读和反读都相同的数为回文数。
    
    // 二、定义变量(已知、未知、关系)
    int n, c = 0; // n表示输入的最大值,c用于计数回文数的数量
    
    // 三、输入已知
    cin >> n; // 输入n的值
    
    // 四、根据关系计算
    for(int i = 1; i <= n; ++i){
        if(isHw(i)) ++c; // 如果i是回文数,则增加计数器
    }
    
    // 五、输出未知
    cout << c; // 输出回文数的总个数
    
    return 0; // 主函数结束
}

三、感谢

如若本文对您的学习或工作有所启发和帮助,恳请您给予宝贵的支持——轻轻一点,为文章点赞;若觉得内容值得分享给更多朋友,欢迎转发扩散;若认为此篇内容具有长期参考价值,敬请收藏以便随时查阅。

每一次您的点赞、分享与收藏,都是对我持续创作和分享的热情鼓励,也是推动我不断提供更多高质量内容的动力源泉。期待我们在下一篇文章中再次相遇,共同攀登知识的高峰!

欢迎关注本专栏《C++从零基础到信奥赛入门级(CSP-J)》

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月别枝惊鹊丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值