pytorch
mario517
这个作者很懒,什么都没留下…
展开
-
pytorch对tensor的一些基本操作(二)
Tensor张量import torch1.torch.stack(): 对tensors沿指定维度拼接,但返回的Tensor会多一维a=torch.rand(2,3)b=torch.randn(2,3)d=torch.stack((a,b), dim=0)print(d)print(d.size())tensor([[[ 0.6726, 0.1213, 0.2705], [ 0.6798, 0.1086, 0.5244]], [[-0.559原创 2020-12-22 22:23:11 · 824 阅读 · 0 评论 -
pytorch对tensor的一些基本操作(一)
pytorch Tensor及其基本操作(一)import torchx=torch.Tensor(5)#默认为0print(x)tensor([0., 0., 0., 0., 0.])1.torch.ones默认值为1x=torch.ones(1,2)print(x)tensor([[1., 1.]])2.torch.zeros默认值为0x=torch.zeros(1,2)print(x)tensor([[0., 0.]])3.torch.full填充x=torch原创 2020-12-22 16:51:34 · 1940 阅读 · 0 评论 -
Pytorch Tensor张量的类型转换与squeeze,unsqueeze的应用
tensor的类型转换data=torch.Tensor(1,2,2,1)#初始化一个形状为(1,2,2,1)的全部为0的Tensor,系统默认为'torch.FloatTensor' 类型data.type()#-->'torch.FloatTensor' ,显示Tensor的类型#转换tensor的类型data.long()data.int()data.float()data.double()#float64data.byte()#等,或者直接tpye()函数里加类型,记住类型首原创 2020-09-23 16:19:46 · 840 阅读 · 0 评论