POJ 3233——Matrix Power Series(矩阵快速幂)

这篇博客首次分享POJ 3233题目的矩阵快速幂解法。题目要求计算S=(A+A^2+A^3+...+A^k)%m,其中涉及矩阵乘法和大数据范围。解决方案是利用2n*2n矩阵进行扩展,并应用快速幂优化,以处理矩阵套矩阵的问题。
摘要由CSDN通过智能技术生成

第一次在博客里发题解(被水淹没不知所措)。。。

题目:POJ 3233 Matrix Power Series

题目大意:这道题不用翻译也能看懂,有一个n*n的矩阵,给出一个k,求S=(A+A^2+A^3+…+A^k)%m。其中n ≤ 30,k ≤ 10^9,m<104。

题目分析:这道题首先要知道矩阵乘法(不知道的请移步百度),然后一看数据范围就知道必须要用快速幂。但是这道题又特坑,矩阵套矩阵!那么就开一个2n*2n的矩阵即可。
矩阵大概就是长这样的:| A | 0 |
……………………………| E | E |
emmmmm。。。其实也不太难啦

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using<
以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值