DL基础
文章平均质量分 96
ismiaodh
巨人的肩膀有点滑~
展开
-
(简单易懂)PCA:Principal Component Analysis 主成分分析
Principal Component Analysis(PCA)是一种数据降维方式,可以将n维数据降低到指定的k维。此时延伸出一个问题,为什么数据要进行降维操作。如 Figure 1 在我们常用的二维坐标系中,我们可以很容易的观察出二维数据的分布规律,从而判断出数据的特性。假设在此数据的基础上,加上z轴,每个数据点在z平面上的抖动非常小,则数据点在z轴的变化对于数据整体的特性影响很小。我们足以在x、y轴上观察到数据的主要规律,那么数据在z轴上的维度可以选择忽略。原创 2024-05-18 22:41:35 · 1945 阅读 · 0 评论 -
(简单易懂)Gaussian Mixed Model 高斯混合模型
GMM具有很多重要的性质,其中最重要的是中心极限定理,它表明许多独立随机变量的均值将近似地服从高斯分布,即使这些变量本身不服从高斯分布。权重越大的高斯分量被选择的概率越高,这确保样本更有可能来自于权重较大的高斯分量,从而符合整体混合模型的分布特点。原创 2024-05-05 16:51:10 · 1333 阅读 · 1 评论 -
(简单易懂)Variational Inference 变分推理
作为经典的网络结构之一,Auto-Encoder在深度学习的多个领域中有着出色的表现,依赖于重构误差的反向优化,模型可以学习到数据在低维空间的表示,过滤掉数据的冗余特征,得到细粒度特征。但是,AE学习的是确定性编码(潜在表示经常是确定性的),而不是数据的概率分布,不能直接提供关于数据分布的信息,可能会产生过拟合等问题。原创 2024-05-04 12:16:12 · 1282 阅读 · 0 评论 -
(简单易懂)Diffusion Model 扩散模型
整个过程为马尔可夫过程,后一时刻的数据只受前一时刻的数据影响,根据前一时刻不断在后一时刻加入噪声。代表真实数据分布(大量图片),在此分布中采样可得到真实图片。为总步长,迭代求解很慢。 我们希望以加噪数据为输入,模型预测去噪后的数据表示为。为每一时刻添加的噪声(均独立同分布),令。的分布数据(去噪过程),但是噪声。 ,去噪过程同样遵循马尔可夫过程。在反向过程中,我们想要求解。此时,得到关系式,可以通过。 是服从高斯分布的真实噪声。 替换掉,在正向过程。是神经网络预测的噪声,原创 2024-05-02 15:04:35 · 1851 阅读 · 1 评论