数据分析SQL常考题型、大厂例题及面试要点

本文探讨了数据分析岗位的核心技能,包括SQL查询、建模能力、业务需求、数据特点,以及优秀数据分析师的特点。详细解析了数据分析工作的步骤,涵盖了数据抓取、清洗、分析、决策和可视化,强调了与业务结合的重要性。此外,还提供了SQL核心技能指南和大厂面试精讲,为求职者提供了实用的准备策略。
摘要由CSDN通过智能技术生成

1. 数据分析岗位技能要求

1.1 哪一个工具是数据分析师的核心工具

SQL是当之无愧的第一工具,排名第二的是BI,excel也相当重要,python所占比例不大。

1.2 对于数据分析师来说,是否需要建模能力

随着经验要求上升,岗位对数据分析建模能力的要求越来越广泛,学习算法和建模是数据分析进阶的必备路径。建模指机器学习算法和深度学习算法。

1.3 数据分析岗位对业务有什么要求

在这里插入图片描述
在这里插入图片描述
业务能力排名第一,产品、运营和项目经验等也都和业务能力挂钩。除了业务外,统计分析、建模也十分重要。

1.4 数据的特点

数据可以做什么?
天气预报:利用物理数据对未来天气进行预测
商业应用:把数据转换成帮助企业发展的生产力
在这里插入图片描述
在这里插入图片描述
数据分析在不同行业可以做什么?
电商类
电商网站会采集大量的用户行为数据,如浏览、购买等,通过这些数据,数据分析师了解不同用户的喜好、行为方式从而帮助增加产品销量
社交类
利用社交网络数据,可以更好的进行精准营销,通过对站子、推文、博客和其他社交数据进行分析,可以有效改善用户服务和体验。
医疗类
卫生保健机构可以针对电子医疗数据进行记录,数据分析师可以基于这些数据,帮助医疗机构改善卫生服务,并发现潜在隐患。
金融类
在金融行业,通过对用户的日常交易数据进行分析,险可以帮助信贷机构评判用户的信用等级,确定信贫额度

1.5 优秀数据分析师的特点

什么是数据?
数据是科学实验、检验、统计、观测等所获得的和用于科学研究、技术设计、查证、决策等的数值。
数据的变异性(体温)
数据的规律性(大数定律) → \rightarrow 数据分析 → \rightarrow 数据驱动决策
数据的客观性

1.业务理解
能跑数,不叫数据分析,和业务结合并产生价值才是数据分析。
2.工具使用
掌握并熟练应用基本的数据分析工具、分析模型和分析方法。
3.沟通表达
具备高效听说写的能力和用数据讲故事的能力

对业务的洞察力决定了一个数据分析师的职业上限。
对行业和产品有热情、热爱学习
从事数据分析工作,首先必须要对进入的行业和产品感兴趣,有好奇心,愿意学习―切未知的知识
关注数据分析对业务产生的价值
能够把业务和数据结合起来,尝试用数据量化业务状态和结果,能够用数据解释潜藏的未被发现的业务逻辑
多问、多思考
当分析需求来的时候,要问下为什么要做这个分析,想解决什么问题。

数据分析师总是需要通过说服产品和工程方面来改变产品,产生影响力
能够跨部门高效沟通
与需求方沟通可以快速了解业务价值,分析背景;与开发部门沟通可以了解业务实现、数据来源;推动数据分析落地业务方需要跨部门沟通
良好的数据可视化能力和撰写分析报告的能力
能够把分析结果变得直观、简单、易理解;分析报告全面、有逻辑、经得住推敲;分析结论可靠、可验证

技术水平决定了数据分析师的下限
熟练使用各类分析模型和分析方法
对使用的模型能清楚其优劣势;对没用过的方法能有所了解,在遇到已有方法解决不了的问题时能够联想到尝试其他方法是否可以解决
一定的编程语言技能
SQL/Python/R; SQL是基础,Python或R可以提升长期工作效率
对数据有很高的敏感度,最好有一定的统计学基础
能够及时发现数据展现的问题,指出深挖的方向;对数据的理解有很强的逻辑性和科学性

1.6 数据分析工作的四大步骤

数据抓取 → \rightarrow 数据清洗 → \rightarrow 数据分析 → \rightarrow 业务决策

1.6.1 数据抓取

数据抓取:确定要抓取什么样的数据
在这里插入图片描述
在这里插入图片描述
还有日志什么的,也可以归入埋点

如何规划数据埋点
在这里插入图片描述
曝光时间:页面有没有加载到,加载了几次。

数据埋点-京东案例

在这里插入图片描述
在这里插入图片描述

1.6.2 数据清洗

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.6.3 数据分析

数据分析是指通过某种方法和技巧,对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规律等分析结果,为特定的研究或商业目的提供参考。
在这里插入图片描述
描述性分析(发生了什么?)
描述某项事物的特性。需要准确、完善甚至是实时的数据。

描述性分析是通过计算数据的集中性特征(平均值和中位数)和波动性特征(标准差值)以了解数据的基本情况。因此在研究中经常是首先进行描述性分析,再次基础之上再进行深入的分析。
描述性分析还可用于查看数据是否有异常情况(最小值或最大值查看),比如数据中出现-2,-3等异常情况。
描述性分析也可以通过峰度和偏度用于判断数据正态性情况。

诊断性分析(为什么会发生?)
在对描述性数据进行评估时,诊断分析工具将使分析师能够深入到细分的数据,从而隔离出问题的根本原因。

诊断性分析是基于描述性分析之上的。诊断分析的目标是了解事情发生的原因。通过诊断分析,可以深入挖掘问题根源,识别依赖关系,找出影响因子。各种分析方法,可以知道问题是怎么发生的,这个过程依赖于我们对业务的了解程度,另外也要多和业务人员进行头脑风暴,只要是可能相关的,都纳入考虑,也可以基于现有特征构造新特征,至于是否相关可在后面的分析中进行验证。

思考题:为什么6月份京东电商平台的订单量激增?从哪些角度去分析?需要哪些数据?
订单量激增,618活动,是不是带来很多流量,转化率怎么样,是不是有直播,爆款产品等等,用户购买率激增。

预测性分析(将会发生什么?)
对数据特征和变量的关系进行描述,基于过去的数据对未来进行预测

相比较于描述性分析与诊断性分析的对于过去数据的分析,预测性分析可以用来说明未来可能发生的事情。它使用描述性和诊断性分析的结果来检测趋势或者关联性,并预测未来动态。

尽管预测性分析可以为未来的趋势提供指导,但是预测也只是一种估计,数据的质量和业务状态的稳定性决定着预测的准确性,所以这类分析往往需要持续不断的优化

规范性分析(需要做什么?)
规范模型利用对发生的事情的理解,为什么发生了这种情况以及各种~可能发生的"分析,以帮助用户确定采取的最佳行动方案。

规范性分析(指导性分析)的目标是告诉我们应该采取什么样的措施来获得最优的结果。它通过利用对已发生事件的理解和事件发生的原因,以及各种可能发生的情况分析来帮助确定可采取的最佳行动方案。指导性分析通常是各类分析的组合。

比如采用数学模型确定最优的商品定价以实现利润最大化、应该怎样实现网页的最优广告位布局等

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.6.4 业务决策

数据分析师总是需要通过说服产品和工程方面来改变产品,产生影响力
清晰的可视化和完整的分析报告
能够把分析结果变得直观、简单、易理解;分析报告全面、有逻辑、经得住推敲;分析结论可靠、可验证
推动产品按数据分析的结论进行修正、落地
数据分析师总是需要通过说服产品和工程方面来改变产品,产生影响力。

1.6.5 数据可视化

数据可视化的基本准则:
1.保证图表的可信性
2.图表能够高效传达信息
3.图表符合美学原则
4.图表参考:经济学人

数据可视化:不准确的坐标轴
在这里插入图片描述

  • 折断的坐标轴低估了Jeremy Corbyn的点赞数量,还夸大了其他人的点赞数量
  • 另一个奇怪的是颜色的选择。对于不太熟悉英国政治的人来说没有什么意义

在这里插入图片描述

  • 在原始图表中,两个坐标轴的跨度均为三个单位(左边是21到18;右边是45到42)。按百分比计算,左边的比例下降了14%而右边则下降了7%。

数据可视化:错误的图表类型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值