构造前缀树(不同题目,构造的属性不同)
抽象:关键是成员变量的构造
class Trie {
//成员变量(本层孩子+末节点的标志)
private Trie[] children;
private boolean isEnd;
public Trie() {
children=new Trie[26];
isEnd=false;
}
public void insert(String word) {
Trie cur=this;
for(int i=0;i<word.length();i++){
char c=word.charAt(i);
int index=c-'a';
if(cur.children[index]==null){
cur.children[index]=new Trie();
}
cur=cur.children[index];
}
cur.isEnd=true;
}
public boolean search(String word) {
Trie last=existPrefix(word);
return last!=null&&last.isEnd==true ? true:false;
}
public boolean startsWith(String prefix) {
return existPrefix(prefix)!=null?true:false;
}
public Trie existPrefix(String prefix){
Trie cur=this;
for(int i=0;i<prefix.length();i++){
char c=prefix.charAt(i);
int index=c-'a';
//中途就有字符不存在,匹配不上了
if(cur.children[index]==null){
return null;
}
cur=cur.children[index];
}
return cur;
}
}
/**
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.insert(word);
* boolean param_2 = obj.search(word);
* boolean param_3 = obj.startsWith(prefix);
*/
单词的压缩编码(前缀树应用)
注意这里的set集合首先充当了第一轮的去重操作,其次借助容器的remove功能进行删除冗余的后缀字符串
class Solution {
public int minimumLengthEncoding(String[] words) {
//Arrays.asList(words)将字符串数组转化为list列表的集合
Set<String> set=new HashSet<>(Arrays.asList(words));
//开始删除冗余的成员(穷举)
for(String word:words){
//原因word字符串中含有所有的后缀,所以不需要重复的后缀
for(int i=1;i<word.length();i++){
set.remove(word.substring(i));
}
}
int res=0;
for(String word:set){
res=res+word.length()+1;
}
return res;
}
}
解法二:直接使用前缀树,原因前缀树的叶子结点的count=0,代表没有孩子节点,因此将每个节点作为map的键,检查是否是叶子结点,来决定是否需要加入长度计算
路径总和(前缀和思想)
初始化时,前缀和为0的路径已经是一个了
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
// 利用前缀和的思想进行求解
class Solution {
public int pathSum(TreeNode root, int targetSum) {
HashMap<Long, Integer> prefix = new HashMap<>();
prefix.put(0L, 1);
return dfs(root, prefix, 0, targetSum);
}
//利用好cur一直记录到当前节点至根节点之间的路径之和(一直更新hashmap数组,注意一定要按照路径添加)
public int dfs(TreeNode root, Map<Long, Integer> prefix, long curr, int targetSum) {
if(root==null){
return 0;
}
int ret;//统计以本节点为末尾节点的targetsum满足的路径数量
curr=curr+root.val;
ret=prefix.getOrDefault(curr-targetSum,0);//判断有没有那样的前缀和(寻找头节点个数)
prefix.put(curr,prefix.getOrDefault(curr,0)+1);//将包含当前节点的前缀和加入map中
//继续自顶向下递归:寻找左右节点的情况
ret=ret+dfs(root.left,prefix,curr,targetSum);
ret=ret+dfs(root.right,prefix,curr,targetSum);
//为了左子树的前缀和不影响右子树的判断,将当前的节点的前缀和减一(相当于一个回溯过程)
prefix.put(curr,prefix.getOrDefault(curr,0)-1);
return ret;
}
}