- 博客(370)
- 资源 (4)
- 收藏
- 关注

原创 CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录
本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!
2022-10-29 15:24:04
44073
6
原创 深度学习·理论篇(2023版)·第012篇反向传播与梯度计算:图像化反向传播+代码实现y=wx的反向传播+梯度消失的实质与案例+梯度爆炸+梯度检查+从信息传播的角度看后向传播算法
万字长文:图像化反向传播+代码实现y=wx的反向传播+梯度消失的实质与案例+梯度爆炸+梯度检查+从信息传播的角度看后向传播算法
2023-05-29 17:37:55
4
原创 万字长文详解深度学习中元学习与小样本问题:如何理解模型自己学会学习?传统的监督学习与 Meta Learning 之间的区别?预训练的三个小改进?如何通过孪生网络完成元学习~
元学习希望使得模型获取一种学会学习调参的能力,使其可以在获取已有知识的基础上快速学习新的任务。机器学习是先人为调参,之后直接训练特定任务下深度模型。元学习则是先通过其它的任务训练出一个较好的超参数,然后再对特定任务进行训练。这些超参数可以是初始化参数、选择优化器、定义损失函数、梯度下降更新参数等。Few-shot Learning是Meta Learning中的一种,Meta Learning 的目的在于 学习如何学习,也就是学习方法论。
2023-05-29 17:27:19
4
原创 Detectron2中运行demo.py时,报错:AssertionError: get_event_storage() has to be called inside a ‘with EventSt
AssertionError: get_event_storage() has to be called inside a 'with EventStorage(...)' context!
2023-05-15 15:22:28
21
原创 推荐系统中的卷积
水平卷积的特点: filter 的宽 与 embedding 矩阵的宽是相等的,在embedding 矩阵从上向下滑动的过程中是通过 filter 的高 来控制要关注几个行为。如图所示,水平卷积层中的卷积在 latent space 上滑动并卷积计算后通过激活函数得到的向量,再通过一个max-pooling ,取出向量中最大的一个值,最后若干卷积的结果 concat 到一起就是该层的输出。举个例子,如下图,历史行为有4个,要预测的候选为长城和酒吧。
2023-04-14 15:14:45
78
原创 Pytorch疑难小实验:Torch.max() Torch.min()在不同维度上的解释
【代码】Torch.max() Torch.min()在不同维度上的解释。
2023-04-11 21:32:04
66
原创 深度学习·理论篇(2023版)·第011篇卷积神经网络计算公式与参数量频域计算:卷积计算详解+卷积层全连接层池化层参数量计算+计算频域卷积
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层)
2023-04-07 08:00:00
227
原创 深度学习·理论篇(2023版)·第010篇多种卷积与可视化:单通道与多通道卷积可视化+(空间可分离卷积+深度可分离卷积+分组卷积+反卷积+八度卷积)可视化+OctConv模型理论
二维情况下的卷积和一维并没有本质上的不同,下面略过公式,直接来形象理解。深度学习·理论篇:单通道与多通道卷积可视化+(空间可分离卷积+深度可分离卷积+分组卷积+反卷积+八度卷积)可视化+OctConv模型理论
2023-04-06 08:00:00
68
原创 深度学习·理论篇(2023版)·第009篇卷积与多维卷积的矩阵频域计算:点积与卷积的可视化+卷积在深度学习中的作用+卷积的理论支撑与公式详解+图像化表示一维卷积的不同情况
卷积神经网络是深度学习中应用最广泛的一种网络,而卷积就是这种网路的基础。本节就来了解卷积的概念,性质和计算方式。点积与卷积的可视化+卷积在深度学习中的作用+卷积的理论支撑与公式详解+图像化表示一维卷积的不同情况
2023-04-05 16:27:00
47
原创 代码import torch 报错 ImportError: numpy.core.multiarray failed to import
使用Anaconda安装pytorch后,import torch报错 ImportError: numpy.core.multiarray failed to import 【解决方案】
2023-03-02 10:39:06
716
原创 【报错解决】ERROR: pip‘s dependency resolver does not currently take into account all the packages
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
2023-03-02 10:34:11
5936
1
原创 numpy 报错:”AttributeError: module ‘numpy‘ has no attribute ‘bool‘“
解决方案 numpy 报错:”AttributeError: module 'numpy' has no attribute 'bool'“
2023-03-02 10:28:23
810
原创 fatal: unable to access ‘https://github xxxxxxxxx的解决方法
将命令中的 https改为 git。
2023-03-02 10:24:33
273
原创 MMdetection框架速成系列 第03部分:简述整体构建细节与模块+训练测试模块流程剖析+深入解析代码模块与核心实现
本文基于第一篇解读文章,详细地从三个层面全面解读了 MMDetection 框架,希望读者读完本文,能够对 MMDetection 框架设计思想、组件间关系和整体代码实现流程了然于心。
2023-03-02 09:52:15
473
原创 “Could not find suitable distribution for Requirement.parse(‘XXXX‘)”的问题
【代码】“Could not find suitable distribution for Requirement.parse(‘XXXX‘)”的问题。
2023-02-27 15:14:01
286
原创 深度学习·理论篇(2023版)·第008篇实际应用中的PCA主成分分析:什么是主成分+特征向量特征值求解主成分+降维归一化与相关系数的概念+降维的手段+什么数据适合PCA
第008篇实际应用中的PCA主成分分析:什么是主成分+特征向量特征值求解主成分+降维归一化与相关系数的概念+降维的手段+什么数据适合。既然高维度带来了如此多的灾难,一个很自然的想法就是降低维度,然后在低维度下解决问题。例如: x’=f(x),如果x’相对于x是一个维度很低的向量,则相当于达到了降维的效果。关于降维,先举一个最简单的例子,即主成分分析(Principal Component Analysis,PCA),考虑如下的协方差矩阵对应的高斯分布的样本,如图2-33所示。
2023-02-15 20:19:39
261
原创 Linux使用解压命令unzip报错:unzip: cannot find zipfile directory in one of xxx.zip
在linux服务器下使用rz上传压缩文件,用unzip命令解压zip包。报这种错误说明在文件上传或下载的过程中出现了文件丢失的情况,需要使用。,然后使用unzip命令或jar命令解压压缩文件。
2023-02-12 21:23:15
4556
原创 PASCAL VOC数据集训练集、验证集、测试集的划分和提取,得到test.txt、train.txt、trainval.txt、val.txt文件代码
创建py文件,将下属代码放入所创建的文件里,VOC2007数据集与py文件在同一目录下。
2023-02-05 12:05:10
2537
原创 MMdetection框架速成系列 第02部分:整体算法流程+模型搭建流程+detection训练与测试核心组件+训练部分与测试部分的核心算法
本文利用MMDetection已经实现的RetinaNet模型在COCO上进行训练作为示例,演示了MMDetection的模型训练流程。总的来说分为三个步骤:1、准备数据集2、准备配置文件:配置文件由一系列dict组成,dict中的type键值代表注册的类别,build函数可以通过识别dict中的type来初始化对应的类。配置文件一般会继承一个通用配置文件,然后在此基础上根据需求调整。3、开始训练:调用MMDetection自带的train.py进行训练。
2022-12-29 19:06:35
7918
原创 MMdetection框架速成系列 第01部分:学习路线图与步骤+优先学习的两个目标检测模型代码+loss计算流程+遇到问题如何求助+Anaconda3下的安装教程(mmdet+mmdet3d)
阅读顺序:深入理解 RetinaNet 后,再看 Faster R-CNN。学习路线图+代码学习步骤+优先学习的两个目标检测模型代码+loss计算流程的攻坚克难+遇到问题如何求助+Anaconda3下的安装教程(mmdet+mmdet3d)
2022-12-29 18:44:51
4195
1
原创 Git 分布式版本控制工具 06在IDEA中使用Git:获取Git仓库+本地仓库操作+远程仓库操作+创建/查看/切换/推送/合并分支操作
1)我们在使用Git管理项目代码时,并不是所有文件都需要Git管理,例如Java项目中编译的.class文件、开发工具自带的配置文件等,这些文件没有必要交给Git管理,所以也就不需要提交到Git版本库中。通过Git命令可以完成Git相关操作,为了简化操作过程,我们可以在IEDA中配置Git,配置好后就可以在IDEA中通过图形化的方式来操作Git。在IDEA中使用Git,本质上还是使用的本地安装的Git软件,所以需要提前安装好Git并在IDEA中配置Git。
2022-12-18 18:18:30
11911
2
原创 Git 分布式版本控制工具 05SSH免登陆:如何使用SSH如何免密登录服务器~
SSH是目前比较可靠的专为远程登录会话和其他网络服务提供安全的协议。不同主机之间在进行通信时,一般都是需要输入密码进行验证, ssh免密码之后,只要通过指定主机地址和端口号就可以实现不同的计算机之间访问时,不需要密码实现直接访问。ssh免密码登录主要采用算法有:对称加密算法和非对称加密算法。
2022-12-18 18:09:33
10672
原创 Git 分布式版本控制工具 04Gitcode案例:多人协作开发流程+创建仓库+拉取操作+克隆仓库+拉取远程仓库中最新的版本+修改拉取的本地代码
在版本控制系统中,大约90%的操作都是在本地仓库中进行的:暂存,提交,查看状态或者历史记录等等。除此之外,如果仅仅只有你一个人在这个项目里工作,你永远没有机会需要设置一个远程仓库。只有当你需要和你的开发团队共享数据时,设置一个远程仓库才有意义。在多人同时开发一个项目时,如果两个人修改了同一个文件的同一个地方,就会发生冲突。git remote add 远程仓库地址别名 远程仓库地址。git push -u 远程仓库地址别名 分支名称。git push 远程仓库地址别名 分支名称。将本地仓库推送到远程仓库。
2022-12-12 11:05:23
9970
原创 Git 分布式版本控制工具 03Git常用命令:Git全局设置+本地与远程仓库操作获取Git仓库+标签操作+忽略名单+工作区、暂存区、版本库+分支操作+暂时保存
通过标签,可以很方便的切换到标记时的状态。注意:上面的用户名和密码对应的就是我们在码云上注册的用户名和密码,认证通过后会将用户名和密码保存到windows系统中(如下图),后续再推送则无需重复输入用户名和密码。注意:分支合并时需注意合并的方向,如上图所示,在Master分支执行操作,结果就是将new分支合并到Master分支。将不需要被git管理的文件名字添加到此文件中,在执行git命令的时候,git就会忽略这些文件。本地仓库和远程仓库中都有分支,同一个仓库可以有多个分支,各个分支相互独立,互不干扰。
2022-12-02 10:48:00
24330
1
原创 Pytorch疑难小实验:理解torch.cat()在不同维度下的连接方式
【代码】Pytorch疑难小实验:理解torch.cat()在不同维度下的连接方式。
2022-11-23 21:03:13
23674
原创 深度学习·理论篇(2023版)·第007篇实际应用中的维度与相关性:数据实际维度+举例说明局部泛化+不同数据到结果的映射函数对实际维度的影响
虽然数据在高维上的缺陷听起来非常可怕,但实际上更常见的情况是,数据常常是在一个等效维度更低的子区域中。除了这些抽象的样本,实际应用中接触到的样本更是如此!1 数据实际的维度1.1 举例说明:实际应用中,数据之间的维度存在相关性1.2 总结结论1.3 举例说明:灰度图像与维度的相关性2 局部泛化2.1 局部泛化的概念2.2 举例:利用一维例子表示局部泛化(Local Generalization)3 数据到结果的映射函数对实际维度的影响
2022-11-22 18:27:46
19170
1
原创 深度学习·理论篇(2023版)·第006篇高维空间下的维度与体积距离的关系:采样和维度+高维空间下体积与距离+中心极限定律与距离分布(深度学习)
高维空间下的维度与体积距离的关系:采样和维度+高维空间下体积与距离+中心极限定律与距离分布。特别注意并不是所有低维度的性质和现象都可以推广到高维情况。因此在高维的世界里,有许多低维空间中顺理成章的事情不再成立,并且由于很难形象理解,这些高维度中的变化往往是让人感到非常头疼的。
2022-11-22 17:54:29
20080
5
原创 我的最佳队友之K8无线蓝牙键盘深度使用测评( Keychron K8 )
可以看到盒子是纯黑色,办公极简风,没什么特殊花哨的地方。出厂带一个拔键器、windows键帽、说明书和键位对照说明卡纸这款Keychron K8 青轴(铝框)键盘融合了多重元素,边框,轴体,背光,热插拔换轴等多项可选配置提供了极高的可玩性,不仅支持MAC和WIN双系统,并且免驱免设置,内置蓝牙5.1模块连接也相当稳定。75%配列84键布局让短键盘也有了相当高效的工作效率,再加上优秀的续航和简洁的设计语言·,难怪在油管上积累了那么高的人气。真,好用!
2022-11-07 09:41:31
10811
原创 深度学习·理论篇(2023版)·第005篇深度学习和概率论基础02:一篇文章图形化联合熵/条件熵/交叉熵/KL散度/JS散度/互信息之间的关系+最大似然估计(MLE)
一篇文章图形化联合熵/条件熵/交叉熵/KL散度/JS散度/互信息之间的关系+最大似然估计(MLE),有个很自然的问题就是,给定观测的数据和分布下,如何才能找到一组参数让分布和数据最大程度地吻合?这个问题就是最大似然估计要解决的。顾名思义,最大似然估计要解决的是下面问题。具体来说,对于一组观测到的数据{x1,x2,…,xn},最大似然的参数为下面的问题:用一个简单例子来看一下,如图2-21所示,为一组观测到的数据在3组不同的正态分布参数下的可视化例子。
2022-11-01 19:51:05
25468
2
原创 深度学习·理论篇(2023版)·第004篇深度学习和概率论基础01:使用大白话举例说明条件概率独立概率+期望值方差+协方差+熵和平均编码长度的关系
如果有事件A和B,在已知B事件发生的条件下,A 事件发生的概率为P(A|B)。通过定义,一个直观的感受是条件概率描述了依赖性。从反面的角度来说,就是一个事件是否是独立的。所以我们来考虑这两种情况:①第一种情况,A事件发生的概率与B事件有关②第二种情况,A事件发生的概率与B事件无关考虑离散情况,期望值的定义如下:从定义来看就是变量值和其对应的概率的乘积,在整个定义域上的求和,简单说就是以概率为加权系数的求和。白话的解释就是在长时重复观测下,实现目标数据的平均值。
2022-10-30 19:16:34
46091
2
原创 深度学习·理论篇(2023版)·第003篇深度学习和计算机视觉中的基础数学知识02:特征向量和特征值+矩阵乘法的几何意义(2)+奇异值分解+线性可分性和维度+非线性变换
特征值和特征向量的定义,对于一个非零向量x和一个矩阵A,如果有标量入使得:则称入为A的特征值,x为对应的特征向量。从定义来看,特征向量的意思就是说对经过变换后,这个向量并没有发生方向的变化(或是完全反向,如果入为负值的话)。我们来直观感受一下特征向量和特征值的几何含义,为方便讨论,以单位向量为例,考虑如下矩阵:这个矩阵变换的特征向量分别为(-1/√2,-1/√2)和(-1/√5,-2/√5),对应的特征值分别是2和3。首先来看看向量(1,0)和(0,1)经过变换后的情况,如图2-10所示。
2022-10-29 17:51:49
33878
原创 深度学习·理论篇(2023版)·第002篇深度学习和计算机视觉中的基础数学知识01:线性变换的定义+基于角度的线性变换案例(坐标变换)+点积和投影+矩阵乘法的几何意义+图形化精讲
线性变换是指具有如下性质的函数T:对于向量u和v,叫做加性(additivity),通俗来说就是两个向量的和经过变换后等于两个向量经过变换后的和。对于标量a、向量u和v叫做齐性(homogeneity),意思是给一个向量缩放一个倍数在变换和变换后再缩放这个倍数结果是一样的。一般来说,在机器学习和视觉中最常遇到的线性变换是矩阵乘法,也就是如下形式的线性变换。
2022-10-29 17:25:30
30627
原创 深度学习·理论篇(2023版)·第001篇快速了解人工智能与Pytorch:机器/表示/深度学习定义+端到端的学习+神经网络在计算机视觉应用+深度学习的技术蓝图
在一些复杂任务中,传统机器学习方法需要将一个任务的输人和输出之间人为地切割成很多子模块(或多个阶段),每个子模块分开学习.比如一个自然语言理解任务,一般需要分词、词性标注、句法分析、语义分析、语义推理等步骤。这种学习方式有两个问题:①每一个模块都需要单独优化,并且其优化目标和任务总体目标并不能保证一致。②错误传播,即前一步的错误会对后续的模型造成很大的影响。图片分类具体指的是通过使用深度学习方法让计算机能够对输入图片的信息进行分析、处理并判定图片所属的类别。
2022-10-29 16:09:00
13320
原创 ImportError: TensorBoard logging requires TensorBoard with Python summary writer installed.
报错:ImportError: TensorBoard logging requires TensorBoard with Python summary writer installed.使用下面的版本安装新版本的tensorboard。tensorboard的版本太低了。安装新版本的tensorboard。
2022-10-27 10:19:36
4178
24
原创 【文章阅读】Frustratingly Simple Few-Shot Object Detection
从几个例子中检测稀有物体是一个新出现的问题。先前的研究表明,元学习是一种很有前途的方法。但是,微调技术几乎没有引起人们的注意。我们发现,仅对稀有类现有检测器的最后一层进行微调对于少镜头目标检测任务是至关重要的。在当前的基准测试中,这种简单的方法比元学习方法高出大约2~20个百分点,有时甚至会使以前的方法的准确率翻一番。然而,少数样本的高方差往往导致现有基准的不可靠。我们通过对多组训练样本进行采样来修改评估协议,以获得稳定的比较,并基于Pascal VOC、COCO和LVIS这三个数据集建立新的基准。
2022-10-22 10:18:35
20911
32
交大PPT通用视觉框架OpenMMlab课程02图像分类与MMClassification
2022-11-27
通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述
2022-11-27
原文Boundary IoU: Improving Object-Centric Image Segmentation
2022-11-18
YOLOV5 6.1版本全中文注释压缩包【带配套教程】
2022-07-11
Python网络爬虫技术手册 源码
2022-03-06
智慧交通-车流量检测实现代码+权重文件.zip
2021-11-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人