自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小李的研究生学习日记

读研期间的文章总结与疑难汇总

  • 博客(392)
  • 资源 (4)
  • 收藏
  • 关注

原创 B站帐号开通了~来关注我吧

直接戳地址~带你发论文。

2024-10-10 20:31:57 608

原创 vscode连接远程服务器(傻瓜式教学)

选择对应的版本进行下载和安装。安装完成之后,启动vscode,选择左侧。此时,你就可以像操作本地文件一样进行文件的增删改查等操作啦![选项卡],在输入框搜索。右键选择远程服务器,点击。

2024-11-19 19:59:38 2563

原创 【视频讲解】顶级期刊即插即用模块代码共享计划·2024第一期:03:针对2D图像的轴向稀疏连接MLP方案(AAAI中科大开源)

本文提出一种新颖的稀疏MLP模块(sMLP)。sMLP模块在2D图像标记中沿轴向方向应用1D MLP,并在行或列之间共享参数。这种方法通过稀疏连接和权重共享显著降低了模型参数的数量和计算复杂度,从而避免了常见的过拟合问题。 Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?(AAAI 2022)

2024-08-18 12:38:28 432

原创 【视频讲解】顶级期刊即插即用模块代码共享计划·2024第一期:02:非相邻层次间语义信息渐进式特征融合策略(2024 1区Top | 浙江大学开源)代码实现

在视觉任务中,多尺度特征对于编码不同尺度的物体至关重要。经典的自上而下和自下而上的特征金字塔网络是多尺度特征提取的常用策略。然而,这些方法都存在特征信息丢失或退化的问题,从而影响了非相邻层次的融合效果。本文提出了一种渐近特征金字塔网络(AFPN),用于解决经典特征金字塔网络中非相邻层次间信息损失或降级的问题。AFPN通过融合相邻低层特征开始,并逐步将更高层次的特征纳入融合过程,从而避免了不同层次间的较大语义差距。此外,为了缓解多对象信息冲突,引入了自适应空间融合操作。

2024-08-11 22:31:58 804

原创 【视频讲解】顶级期刊即插即用模块代码共享计划·2024第一期:01:波叠加原理的社会池化方法(AAAI2023)与并行补丁感知注意力模块(2024)代码实现

本文提出了一种基于波叠加原理的社会池化方法(Wave-pooling),用于更有效地捕捉动态和高阶交互,并预测周围车辆的运动轨迹。该方法通过将每个车辆建模为具有振幅和相位的波来表示其动态状态,并通过波的叠加来捕捉它们之间的高阶动态交互。

2024-08-08 13:38:54 1924

原创 Pytorch安装问题:Solving environment 一直循环/Solving environment: failed with initial frozen solve

在conda某个包的时候,出现了Solving environment: \一直不动的情况。实在是等不下去了,那该怎么解决?Pytorch安装问题:Solving environment 一直循环/Solving environment: failed with initial frozen solve。

2024-08-08 10:02:27 2506 2

原创 Faster-RCNN·代码解读系列04:在云GPU平台零成本搭建Faster-Rcnn经典检测模型教程(GPU可白嫖)【H800上线了,全场低价节】

《在云GPU平台零成本搭建Faster R-CNN经典检测模型教程》这篇教程旨在指导读者如何利用免费的云GPU资源来搭建和训练Faster R-CNN这一经典的物体检测模型。该教程详细介绍了从环境配置到模型训练的全过程,并强调了如何在不产生任何费用的情况下完成这些步骤。主要内容包括:选择合适的云服务提供商及其提供的免费GPU实例。使用Docker容器化技术简化开发环境的配置过程。安装必要的软件包和依赖库,如PyTorch、COCO API等。准备训练数据集,并对其进行预处理以适应Faster

2024-07-31 11:39:53 4812

原创 Faster-RCNN·代码解读系列03:一口气拿下Faster Rcnn模型代码详解

Faster R-CNN是一种高效的目标检测框架,它巧妙地整合了区域提案网络(RPN)与深度卷积神经网络,利用共享卷积层从输入图像中抽取特征;RPN基于这些特征生成高质量的候选区域(对象建议),随后通过ROI池化层标准化这些区域的尺寸,最后送入分类与边界框回归模块,确定每个区域中的对象类别及其精确位置,从而实现既快又准的对象识别任务。

2024-07-20 17:36:52 920

原创 【数据集处理工具】将COCO格式数据集的val.json与tett.json文件合并为一个json

合并images字段:脚本会将来自不同JSON文件的图像信息列表合并在一起,构建一个统一的图像信息集合。合并字段:脚本在合并标注信息时,会确保每个标注的ID(id字段)在最终的合并数据集中是唯一的。这通过追踪已有的最大标注ID并在导入新的标注时递增ID来实现。保留categories字段:由于假定所有数据集的类别信息一致,脚本默认从第一个数据集中复制categories字段到合并后的数据集,而不做任何改变。保留其他元数据:脚本还会保留info和licenses。

2024-07-16 14:29:33 702

原创 【数据集处理工具】根据COCO数据集的json标注文件实现训练与图像的文件划分

COCO(Common Objects in Context)数据集是一种广泛使用的图像数据集,它不仅包含了丰富的图像资源,还提供了详尽的标注信息,包括物体检测、分割、关键点定位等。COCO JSON文件是一种结构化的数据格式,用于存储关于图像的元数据和标注细节,例如图像ID、文件名、图像尺寸以及各种标注信息。

2024-07-16 10:02:19 755

原创 Faster-RCNN·代码解读系列02:一口气拿下Faster RCNN模型及其设计原理

本文旨在详细解析Faster R-CNN的工作原理及其设计原理,帮助读者深入理解这一重要模型。Faster R-CNN是在Fast R-CNN的基础上进一步发展的,其核心贡献在于引入了RPN网络,实现了候选框(Region Proposal)的自动生成,从而替代了传统的Selective Search算法,大大提升了检测速度。Faster R-CNN通过共享卷积特征,将RPN和Fast R-CNN融合为一个端到端的网络,实现了更高效的训练和检测。

2024-07-06 14:25:51 1317

原创 Faster-RCNN·代码解读系列01:Selective Search 和 R-CNN、Fast-CNN 简介

首先需要一个已经训练好的分类器,然后把图像按照一定间隔和不同的大小分成若干窗口,在这些窗口上执行分类器,如果得到较高的分类分数,就认为是检测到了物体。把每个窗口都用分类器执行一遍之后,再对得到的分数做一些后处理如非极大值抑制(Non-Maximum Suppression, NMS)等,最后就得到了物体类别和对应区域,其方法示意图如图所示。滑窗法相当于对一张图像上的子区域进行类似穷举式的搜索, 一般情况下这种低效率搜索到的区域里大部分都是没有任何物体的。

2024-07-06 13:49:03 831

原创 CSF视频文件格式转换WMV格式(2024年可用)

推荐一款高效、易用的CSF格式转换为WMV格式的工具,旨在帮助用户无缝跨越格式壁垒,享受无损且流畅的视频体验。产品亮点:一键转换:这款工具设计简洁直观,用户只需几步简单操作即可完成CSF格式到WMV格式的转换。无需专业知识,轻松上手。高质量输出:采用先进的视频编码技术,确保转换过程中视频质量最大化保留,无论是清晰度、色彩还是音频效果,都能得到近乎无损的转换结果。批量处理:支持批量添加CSF文件进行转换,大大节省时间,非常适合需要处理大量视频素材的用户。

2024-06-28 14:12:11 977

原创 快速上手Pytrch爬虫之爬取某应图片壁纸

必应是微软推出的搜索引擎,相比于百度具有广告少的显著优点,比较良心。幸运的是已经有人完成了这项工作,具体请看这个网站:必应每日高清壁纸(这个网站收录了必应每天的主页图片,并且提供直接下载(管理猿太良心了,祝愿少掉一些头发,少写一些bug )。但是博主发现这个网站缺少一个一键全部下载功能,只能一张一张图片手动下载,如果要把所有图片都下载下来,非常麻烦,因此用python写了一个下载网站上所有图片的小爬虫,分享给大家。

2024-03-28 10:11:21 1444

原创 知存科技助力AI应用落地:WTMDK2101-ZT1评估板实地评测与性能揭秘

随着当今数据迅速增长,传统的冯诺依曼架构内存墙正在成为计算性能进一步提升的阻碍。新一代的存内计算(IMC)和近存计算(NMC)架构有望突破这一瓶颈,显著提升计算能力和能源效率。本文将探讨存算一体芯片的发展历程、当前研究状态,以及基于多种存储介质(例如传统的DRAM、SRAM和Flash,以及新型的非易失性存储器如ReRAM、PCM、MRAM、FeFET等)的存内计算基本原理、优势与面临的挑战。通过对知存科技WTM2101量产芯片的深入解析与评测,重点展示存内计算芯片的电路结构及其应用现状。

2024-01-17 10:41:57 1423

原创 听力笔记2023

2023-07-27 21:13:00 279

原创 MMdetection框架速成系列 第07部分:数据增强的N种方法

对图像的色彩进行数据增强的方法,其中最常用的莫过于 ColorJitter,这种方法会在一定范围内,对图像的亮度(Brightness)、对比度(Contrast)、饱和度(Saturation)和色相(Hue)进行随机变换,从而模拟真实拍摄中不同灯光环境等条件的变化。以上介绍的数据增强方法只是常用方法的一部分,更多的数据增强方法,如多种方法的随机组合(AutoAugment、RandAugment)、多张图片的混合增强(MixUp、CutMix)等。在图片的随机位置,按照指定的大小进行裁剪。

2023-07-27 20:52:11 3829 3

原创 MMdetection框架速成系列 第06部分:注册机制详解

比如说,我们现在想要使用注册器来管理我们的模型,首先初始化一个Registry实例MODELS,然后调用Registry类的register_module()方法完成ResNet和VGG类的注册,可以看到最后MODELS的打印结果中包含了这两个类的信息(打印信息中items对应的其实就是self._module_dict),表示注册成功。注册机制是MMCV中非常重要的一个概念,在MMDetection中,如果想要增加自己的算法模块或流程,都需要通过注册机制来实现。

2023-07-27 20:48:20 1003 1

原创 Visio/PPT/Matlab输出300dpi以上图片【满足标准投稿要求】

遵照如下输出选项,另存为tif格式文件时,选择正确输出便是300dpi以上。

2023-07-24 18:29:56 2947

原创 【数据集可视化】COCO数据集标注可视化+代码实现

【代码】【数据集可视化】COCO数据集标注可视化+代码实现。

2023-07-03 22:18:50 1585

原创 MMdetection框架速成系列 第04部分:配置文件详细解析+文件结构剖析+Config类核心实现

ConfigDict是第三方库addict中Dict的子类,因为python原生的dict类型不支持.属性的访问方式,特别是dict内部嵌套了多层dict的时候,如果按照key的访问方式,代码写起来非常低效,而Dict类通过重写__ getattr __()的方式实现了.属性的访问方式。如果想要现在想要换一个新的优化器,但两个优化器的参数不兼容,需要删掉原来的键值,用一组全新的键值代替,这时可以通过配置。text存储的是各个配置文件(包含_base _中继承的文件)中的原始文本信息,会标识配置文件的路径。

2023-07-03 21:58:18 587

原创 学术小技巧:如何使用easyscholar来提高论文查找效率

easyScholar是一款很好用的科研插件,可以显示会议期刊登记,支持轻量翻译,一键下载等等功能。

2023-06-25 15:56:55 5004

原创 深度学习模型训练中epoch、batch size和iterations之间的含义与区别

深度学习模型训练中epoch、batch size和iterations之间的含义与区别

2023-06-07 17:39:49 1513 1

原创 深度学习·理论篇(2023版)·第012篇反向传播与梯度计算:图像化反向传播+代码实现y=wx的反向传播+梯度消失的实质与案例+梯度爆炸+梯度检查+从信息传播的角度看后向传播算法

万字长文:图像化反向传播+代码实现y=wx的反向传播+梯度消失的实质与案例+梯度爆炸+梯度检查+从信息传播的角度看后向传播算法

2023-05-29 17:37:55 280

原创 万字长文详解深度学习中元学习与小样本问题:如何理解模型自己学会学习?传统的监督学习与 Meta Learning 之间的区别?预训练的三个小改进?如何通过孪生网络完成元学习~

元学习希望使得模型获取一种学会学习调参的能力,使其可以在获取已有知识的基础上快速学习新的任务。机器学习是先人为调参,之后直接训练特定任务下深度模型。元学习则是先通过其它的任务训练出一个较好的超参数,然后再对特定任务进行训练。这些超参数可以是初始化参数、选择优化器、定义损失函数、梯度下降更新参数等。Few-shot Learning是Meta Learning中的一种,Meta Learning 的目的在于 学习如何学习,也就是学习方法论。

2023-05-29 17:27:19 898

原创 Detectron2中运行demo.py时,报错:AssertionError: get_event_storage() has to be called inside a ‘with EventSt

AssertionError: get_event_storage() has to be called inside a 'with EventStorage(...)' context!

2023-05-15 15:22:28 356

原创 推荐系统中的卷积

水平卷积的特点: filter 的宽 与 embedding 矩阵的宽是相等的,在embedding 矩阵从上向下滑动的过程中是通过 filter 的高 来控制要关注几个行为。如图所示,水平卷积层中的卷积在 latent space 上滑动并卷积计算后通过激活函数得到的向量,再通过一个max-pooling ,取出向量中最大的一个值,最后若干卷积的结果 concat 到一起就是该层的输出。举个例子,如下图,历史行为有4个,要预测的候选为长城和酒吧。

2023-04-14 15:14:45 343

原创 Pytorch疑难小实验:Torch.max() Torch.min()在不同维度上的解释

【代码】Torch.max() Torch.min()在不同维度上的解释。

2023-04-11 21:32:04 305

原创 深度学习·理论篇(2023版)·第011篇卷积神经网络计算公式与参数量频域计算:卷积计算详解+卷积层全连接层池化层参数量计算+计算频域卷积

卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层)

2023-04-07 08:00:00 711

原创 深度学习·理论篇(2023版)·第010篇多种卷积与可视化:单通道与多通道卷积可视化+(空间可分离卷积+深度可分离卷积+分组卷积+反卷积+八度卷积)可视化+OctConv模型理论

二维情况下的卷积和一维并没有本质上的不同,下面略过公式,直接来形象理解。深度学习·理论篇:单通道与多通道卷积可视化+(空间可分离卷积+深度可分离卷积+分组卷积+反卷积+八度卷积)可视化+OctConv模型理论

2023-04-06 08:00:00 528

原创 深度学习·理论篇(2023版)·第009篇卷积与多维卷积的矩阵频域计算:点积与卷积的可视化+卷积在深度学习中的作用+卷积的理论支撑与公式详解+图像化表示一维卷积的不同情况

卷积神经网络是深度学习中应用最广泛的一种网络,而卷积就是这种网路的基础。本节就来了解卷积的概念,性质和计算方式。点积与卷积的可视化+卷积在深度学习中的作用+卷积的理论支撑与公式详解+图像化表示一维卷积的不同情况

2023-04-05 16:27:00 337

原创 2023.3.5英语单词学习笔记

英语单词

2023-03-05 20:11:21 2011

原创 代码import torch 报错 ImportError: numpy.core.multiarray failed to import

使用Anaconda安装pytorch后,import torch报错 ImportError: numpy.core.multiarray failed to import 【解决方案】

2023-03-02 10:39:06 990

原创 【报错解决】ERROR: pip‘s dependency resolver does not currently take into account all the packages

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.

2023-03-02 10:34:11 22556 5

原创 numpy 报错:”AttributeError: module ‘numpy‘ has no attribute ‘bool‘“

解决方案 numpy 报错:”AttributeError: module 'numpy' has no attribute 'bool'“

2023-03-02 10:28:23 1723

原创 fatal: unable to access ‘https://github xxxxxxxxx的解决方法

将命令中的 https改为 git。

2023-03-02 10:24:33 565

原创 MMdetection框架速成系列 第03部分:简述整体构建细节与模块+训练测试模块流程剖析+深入解析代码模块与核心实现

本文基于第一篇解读文章,详细地从三个层面全面解读了 MMDetection 框架,希望读者读完本文,能够对 MMDetection 框架设计思想、组件间关系和整体代码实现流程了然于心。

2023-03-02 09:52:15 1274

原创 “Could not find suitable distribution for Requirement.parse(‘XXXX‘)”的问题

【代码】“Could not find suitable distribution for Requirement.parse(‘XXXX‘)”的问题。

2023-02-27 15:14:01 1531

原创 深度学习·理论篇(2023版)·第008篇实际应用中的PCA主成分分析:什么是主成分+特征向量特征值求解主成分+降维归一化与相关系数的概念+降维的手段+什么数据适合PCA

第008篇实际应用中的PCA主成分分析:什么是主成分+特征向量特征值求解主成分+降维归一化与相关系数的概念+降维的手段+什么数据适合。既然高维度带来了如此多的灾难,一个很自然的想法就是降低维度,然后在低维度下解决问题。例如: x’=f(x),如果x’相对于x是一个维度很低的向量,则相当于达到了降维的效果。关于降维,先举一个最简单的例子,即主成分分析(Principal Component Analysis,PCA),考虑如下的协方差矩阵对应的高斯分布的样本,如图2-33所示。

2023-02-15 20:19:39 472

原创 COCO转VOC代码:将coco格式的json文件转换为voc格式的xml文件

【代码】COCO转VOC代码。

2023-02-12 23:44:16 1062 3

在云GPU平台零成本搭建Faster-Rcnn经典检测模型教程

《在云GPU平台零成本搭建Faster R-CNN经典检测模型教程》这篇教程旨在指导读者如何利用免费的云GPU资源来搭建和训练Faster R-CNN这一经典的物体检测模型。该教程详细介绍了从环境配置到模型训练的全过程,并强调了如何在不产生任何费用的情况下完成这些步骤。 主要内容包括: 选择合适的云服务提供商及其提供的免费GPU实例。 使用Docker容器化技术简化开发环境的配置过程。 安装必要的软件包和依赖库,如PyTorch、COCO API等。 准备训练数据集,并对其进行预处理以适应Faster R-CNN的要求。 下载预训练模型权重文件作为起点,加快训练进程。 编写训练脚本,设置超参数,并开始训练过程。 监控训练进度和性能指标,如损失函数值、准确率等。 对训练好的模型进行测试与评估,确保其达到预期效果。 此外,教程还提供了一些实用技巧,帮助用户优化模型性能并最大限度地利用免费资源。通过遵循本教程的指导,即使是初学者也能快速上手,实现Faster R-CNN模型的构建和训练。

2024-07-31

PADRe: A Unifying Polynomial Attention Drop-in Replacement

PADRe: A Unifying Polynomial Attention Drop-in Replacement for Efficient Vision Transformer。我们提出了多项式注意置换(PADRe),这是一个新颖而统一的框架,旨在取代变压器模型中的传统自我注意机制。值得注意的是,最近的几种替代注意力机制,包括 Hyena、Mamba、SimA、Conv2Former 和 Castling-ViT 等,都可以看作是我们的 PADRe 框架的具体实例。PADRe 利用多项式函数并借鉴近似理论的成熟结果,在不影响精度的前提下提高了计算效率。PADRe 的关键要素包括乘法非线性,我们使用直观、硬件友好的操作(如 Hadamard 乘积)来实现这些非线性,只产生线性计算和内存成本。PADRe 还避免了使用 Softmax 等复杂函数的需要,但与传统的自注意相比,它仍能保持相当或更高的精确度。我们评估了 PADRe 在各种计算机视觉任务中替代自我注意的有效性。这些任务包括图像分类、基于图像的二维物体检测和三维点云物体检测。

2024-07-18

CSF格式视频转WMV格式工具

推荐一款高效、易用的CSF格式转换为WMV格式的工具,旨在帮助用户无缝跨越格式壁垒,享受无损且流畅的视频体验。 产品亮点: 一键转换:这款工具设计简洁直观,用户只需几步简单操作即可完成CSF格式到WMV格式的转换。无需专业知识,轻松上手。 高质量输出:采用先进的视频编码技术,确保转换过程中视频质量最大化保留,无论是清晰度、色彩还是音频效果,都能得到近乎无损的转换结果。 批量处理:支持批量添加CSF文件进行转换,大大节省时间,非常适合需要处理大量视频素材的用户。 快速转换:优化的算法让转换速度飞快,即便是大体积视频文件也能在短时间内完成转换,提高工作效率。 广泛兼容性:不仅支持从CSF到WMV的转换,还兼容多种其他视频格式输入输出,满足不同场景需求。同时,该工具兼容Windows和Mac操作系统,覆盖更广泛的用户群体。

2024-06-28

PyTorch框架基本处理操作

PyTorch是一个开源的深度学习框架,它提供了丰富的工具和函数,用于处理和操作张量(Tensor)以及构建神经网络模型。下面是PyTorch框架中一些基本的处理操作: 1. 张量创建:PyTorch中的基本数据结构是张量,可以使用torch.Tensor()函数创建一个张量对象。例如,可以使用torch.Tensor([[1, 2], [3, 4]])创建一个2x2的张量。 2. 张量操作:PyTorch提供了丰富的张量操作函数,如加法、减法、乘法、除法等。可以使用torch.add()、torch.sub()、torch.mul()、torch.div()等函数进行相应的操作。 3. 自动求导:PyTorch的一个重要特性是自动求导。通过设置requires_grad=True,可以跟踪张量上的操作,并自动计算梯度。可以使用backward()函数计算梯度,并使用grad属性获取梯度值。 4. 神经网络模型构建:PyTorch提供了torch.nn模块,用于构建神经网络模型。可以通过继承nn.Module类来定义自己的模型,并实现forward()函数来定义前向传播过程。

2024-03-31

中国计算机学会推荐国际学术会议和期刊目录-2022

这个Excel文件汇总了中国计算机学会推荐的国际学术会议和期刊目录(2022版)的内容。中国计算机学会是中国计算机领域的学术组织,他们根据学术质量和影响力,对国际学术会议和期刊进行评估和推荐。 在该文件中,你可以找到以下信息: 1. 会议目录:列出了中国计算机学会推荐的国际学术会议的目录。这些会议是在计算机科学和相关领域具有重要影响力的学术盛会,涵盖了人工智能、数据科学、网络安全、人机交互等多个研究领域。 2. 期刊目录:提供了中国计算机学会推荐的国际学术期刊的目录。这些期刊是在计算机科学领域具有高质量和高影响力的期刊,发表在这些期刊上的论文往往具有较高的学术价值。 3. 学科分类:对每个会议和期刊进行了学科分类,方便读者按照自己的研究领域进行查找。 通过这个Excel文件,你可以快速了解中国计算机学会推荐的国际学术会议和期刊的概况,找到与计算机科学相关的重要会议和期刊,对你的学术研究将会有很大帮助。

2023-08-14

中文核心期刊要目总览(2020版)

因《中文核心期刊要目总览》官方电子版未在网上发布,本电子版目录参照原版图书整理。这个Excel文件汇总了中文核心期刊要目总览(2020版)的内容。中文核心期刊是指在学术界有一定影响力和重要性的期刊,对于学术研究和学术评价具有重要的参考价值。 在该文件中,你可以找到以下信息: 1. 期刊名称:列出了各个中文核心期刊的名称,这些期刊涵盖了不同学科领域的研究内容。 2. 学科分类:对每个期刊进行了学科分类,方便读者按照自己的研究领域进行查找。 3、检索方式:提供了每个期刊的检索方式,包括在哪些数据库中可以检索到该期刊的文章。 通过这个Excel文件,你可以快速了解中文核心期刊的概况,找到相关领域的重要期刊,并了解它们的影响力和检索方式,对你的学术研究将会有很大帮助。

2023-08-14

【IEEE期刊的版面费汇总】IEEE-Article-Processing-Charges-List

该Excel文件汇总了IEEE期刊版面费的内容。根据提供的信息,该文件包含了不同期刊的版面费用信息。版面费是指作者在发表论文时需要支付的费用,用于支持期刊的运营和出版工作。在文件中,每一行可能包含期刊名称、费用金额、支付方式等相关信息。这个文件可以帮助了解各个期刊的版面费用,并且可以作为参考,帮助在投稿时进行预算和决策。通过对该文件的概述,可以更好地管理和规划您的研究经费。

2023-08-14

交大PPT通用视觉框架OpenMMlab课程02图像分类与MMClassification

【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类与MMClassification【交大PPT】通用视觉框架OpenMMlab课程02图像分类

2022-11-27

通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述

通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMMLab概述通用视觉框架OpenMMlab课程01计算机视觉与OpenMML

2022-11-27

原文Boundary IoU: Improving Object-Centric Image Segmentation

【原文】Boundary IoU: Improving Object-Centric Image Segmentation Evaluation。这是CVPR2021的一篇文章,We present Boundary IoU (Intersection-over-Union), a new segmentation evaluation measure focused on boundary quality. We perform an extensive analysis across different error types and object sizes and show that Boundary IoU is significantly more sensitive than the standard Mask IoU measure to boundary errors for large objects and does not over-penalize errors on smaller objects.

2022-11-18

YOLOV5 6.1版本全中文注释压缩包【带配套教程】

本文件已对YOLOV5的代码进行全中文注释,帮助小伙伴们解决代码看不懂的问题,注释不易切用且珍惜,白嫖的话可以直接看,本项目配套https://blog.csdn.net/qq_39237205/category_11911202.html进行讲解,需要更多详情的可以关注栏目,YOLOv5 是在 YOLOv4 出来之后没多久就横空出世了。目前 YOLOv5 发布了新的版本,6.0版本。在这里,YOLOv5 也在5.0基础上集成了更多特性,同时也对模型做了微调,并且优化了模型大小,减少了模型的参数量。那么这样,就更加适合移动端了。【UTF-8编码】

2022-07-11

Python网络爬虫技术手册 源码

Python网络爬虫技术手册 Python网络爬虫技术手册 Python网络爬虫技术手册 Python网络爬虫技术手册 Python网络爬虫技术手册 Python网络爬虫技术手册

2022-03-06

【全网首发】Pytorch深度学习与图神经网络卷1:基础知识

Pytorch深度学习与图神经网络卷1:基础知识的ppt与code下载

2022-01-15

智慧交通-车流量检测实现代码+权重文件.zip

智慧交通CV项目 https://blog.csdn.net/qq_39237205/category_11469074.html

2021-11-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除