智商恢复训练(二分,三分)

整数二分
1.mid在左边, [ l , m i d ] 与 [ m i d + 1 , r ] [l,mid] 与[mid+1,r] [l,mid][mid+1,r](在左边的意思是当mid符合条件时,寻找的范围变成左半边)

int bsearch(int l, int r)
{
    while(l < r)
    {
    	int mid = l + r >> 1;
    	if(check(mid)) r = mid;
    	else l = mid + 1;
    }
    return l;
}

2.mid在右边, [ l , m i d − 1 ] 与 [ m i d , r ] [l,mid-1] 与[mid,r] [l,mid1][mid,r]

int bsearch(int l, int r)
{
    while(l < r)
    {
    	int mid = l + r + 1 >> 1;
    	if(check(mid)) l = mid;
    	else r = mid - 1;
    }
    return l;
}

3.关于溢出问题

int mid = l + 0LL + r >> 1;

实数二分
1.eps一般为要求精度的1/100,若觉得不靠谱,可设置二分次数

double l = a,r = b;
while(r - l > eps)
{
	double mid = (l + r) / 2;
	if(check(mid)) r = mid;
	else l = mid;
}

三分

1.二分就是求边界,三分就是求最小值(最大值)

poj2018Best Cow Fences
题意:给一个正整数的序列,求一个长度大于等于L,平均数最大的子段。

二分答案,用前缀和与双指针解决判定问题

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)

const int maxn = 1e5 + 100;

int n,m;
int a[maxn];
double f[maxn];
bool check(double s)
{
	rep(i,1,n+1)
		f[i] = f[i-1] + a[i] - s;

	double mi = 0;
	int j = 0;
	rep(i,m,n+1)
	{
		mi = min(mi,f[j]);
		j++;
		if(f[i] >= mi)
			return true;
	}	
	return false;
}

int main(int argc, char const *argv[])
{
	scanf("%d%d",&n,&m);
	double l = 0,r = 0;
	rep(i,1,n+1)
	{
		scanf("%d",&a[i]);
		r = max(r,(double)a[i]);
	}
	while(r - l > 1e-5)
	{
		double mid = (r + l) / 2;
		if(check(mid)) l = mid;
		else r = mid;
	}
	printf("%d\n",(int)(r * 1000));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值