数据结构与算法--Java--day01--LinearSearch及复杂度分析

本文详细介绍了线性查找算法的工作原理,包括其基本操作和时间复杂度O(n)的特点。讨论了数据量大和目标位置不确定性时的效率问题,并展示了如何使用泛型改进代码,以适应不同数据类型。同时,通过实例演示了如何在自定义对象数组中查找,以及对算法性能的复杂度分析和实测。
摘要由CSDN通过智能技术生成

线性查找

线性查找是一种在数组中查找数据的算法, 即便数据没有按顺序存储,也可以应用线性查找。线性查找的操作很简单,只要在数组中从头开始依次往下查找即可。虽然存储的数据类型没有限制,但为了便于理解,这里我们假设存储的是整数
在这里插入图片描述在这里插入图片描述在这里插入图片描述
找到6了,查找结束。
线性查找需要从头开始不断地按顺序检查数据,因此在数据量大且目标数据靠后,
或者目标数据不存在时,比较的次数就会更多,也更为耗时。若数据量为 n,线性查找
的时间复杂度便为 O(n)。

public class LinearSearch {
    // 构造函数 私有 不希望被 new
    private LinearSearch(){
        System.out.println("构造函数被调用");
    }

    /**
     * @param data  目标数组
     * @param target  目标值
     * @return 返回 目标索引
     */
    public static int search(int[] data, int target){
        for (int i = 0; i < data.length; i++) {
            if (data[i] == target)
                return i;
        }
        return -1;
    }
}

测试

package com.qcx.algo.linearSearch;

public class TestLinearSearch {
    public static void main(String[] args) {
        // 声明一个数组
        int[] data = {24, 18, 12, 9, 16, 66, 32, 4};
        // 编写算法, 在 data中查找值为 16的元素
        int index = LinearSearch.search(data, 16);
        System.out.println(index);
        int index2 = LinearSearch.search(data, 666);
        System.out.println(index2);
    }
}
  • 使用泛型修改代码这样对传入的数据不做具体限制

public class LinearSearch {
    // 构造函数 私有 不希望被 new
    private LinearSearch(){
        System.out.println("构造函数被调用");
    }

    /**
     * @param data  目标数组
     * @param target  目标值
     * @return 返回 目标索引
     */
    public static <E>  int search(E[] data, E target){
        for (int i = 0; i < data.length; i++) {
            if (data[i].equals(target)){
                return i;
            }

        }
        return -1;
    }
}

测试

public class TestLinearSearch {
    public static void main(String[] args) {
        // 声明一个数组
        Integer[] data = {24, 18, 12, 9, 16, 66, 32, 4};
        // 编写算法, 在 data中查找值为 16的元素
        int index = LinearSearch.search(data, 16);
        System.out.println(index);

        String[] data2 = {"24", "haha", "12", "9", "hehe", "66", "32", "4"};
        int index2 = LinearSearch.search(data2, "hehe");
        int index3 = LinearSearch.search(data2, "huhu");
        System.out.println(index2);
        System.out.println(index3);
    }
}

测试自定义类型的线性查找

定义Student类


import java.util.Objects;

// 像Student这种实体类, 我们一般设计成JavaBean
public class Student {
    // 成员属性私有 (必须)
    private String name;
    // 无参构造(必须)

    public Student() {
    }
    // 全参构造
    public Student(String name) {
        this.name = name;
    }

    // get/set 方法 (必须)

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;

    }

    @Override
    public boolean equals(Object student) {
        if (this == student)
            return true;
        if (student == null)
            return false;
        if (this.getClass() != student.getClass())
            return false;
        Student anothor = (Student)student;
        return this.name.equals(anothor.name);
//        String targetName = anothor.name;
//        boolean b = this.name.equals(targetName);
//        return b ;
    }

}

进行测试

package com.qcx.algo.defclass;

public class LinearSearch {
    // 构造函数 私有 不希望被 new
    private LinearSearch(){
        System.out.println("构造函数被调用");
    }

    /**
     * @param data  目标数组
     * @param target  目标值
     * @return 返回 目标索引
     */
    public static <E>  int search(E[] data, E target){
        for (int i = 0; i < data.length; i++) {
            if (data[i].equals(target)){
                return i;
            }

        }
        return -1;
    }
    public static void main(String[] args) {
        Student[] students = {new Student("Eric"),
                new Student("haha"),
                new Student("James")};
        Student target = new Student("James");
        int index = LinearSearch.search(students, target);
        System.out.println(index);

    }
}

返回是2 , String 的equals方法值得我们学习

public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof String) {
            String anotherString = (String)anObject;
            int n = value.length;
            if (n == anotherString.value.length) {
                char v1[] = value;
                char v2[] = anotherString.value;
                int i = 0;
                while (n-- != 0) {
                    if (v1[i] != v2[i])
                        return false;
                    i++;
                }
                return true;
            }
        }
        return false;
    }

复杂度分析

表示算法的性能

常见算法复杂度分析

  • 线性查找法 —> O (n)
  • 一个数组中元素可以组成那些数据对 —> O (n^2)
  • 遍历二维数组 —> O (n^2)
  • log(n)
    举例: 二分搜索
    在最好情况下二分搜索的时间复杂度是 O(1),最坏情况(平均情况)下 O(log n),我们直接来看最坏情况下的例子。已知有 16 个元素的有序数组。
    举个最坏情况的例子,比如我们要找的是数字 13。


    选中间的元素作为中心点(长度的一半)

    13 小于中心点,所以不用考虑数组的后一半

    重复这个过程,每次都寻找子数组的中间元素


    每次和中间元素比较都会使搜索范围减半。

所以为了从 16 个元素中找到目标元素,我们需要把数组平均分割 4 次,也就是说,


  • 数字n的二进制数是多少 ----》O(log n)
package com.qcx.algo.defclass;

import java.util.ArrayList;

public class Jinzhi {
    public static void main(String[] args) {
        DToB(10);
        DToB(8);
    }
    public static void DToB(int n){
        int t = 0; // 用来记录位数
        int bin = 0; // 用来记录最后的二进制数
        int r = 0; // 余数
        while (n !=0){
            r = n%2;
            n = n/2;
            bin += r*Math.pow(10, t);
            t++;
        }
        System.out.println(bin);
    }
}

  • 求约数 — 》O (n)

  • O 根号 n

  • 长度为 n的二进制数字 O(2^n)

  • 长度为 n的数组的所有排列 O(n!)

  • 判断数字是否为偶数 O(1)
    复杂度计较

O(1)  < O(logn) < O(根号n) < O(n) < O(nlogn)< O(n^2) < O(2^n) < O(n!)

空间复杂度和时间复杂度同理

测试算法性能

生成数字工具类

package com.qcx.algo.testalgo;

public class ArrayGenerator {
    private ArrayGenerator(){};
    public static Integer[] generateOrderedArray(int n){
        Integer[] arr =  new Integer[n];
        for (int i = 0; i < arr.length; i++) {
           arr[i] = i; 
        }
        return arr;
    }
}

测试

package com.qcx.algo.testalgo;

public class LinearSearch {
    // 构造函数 私有 不希望被 new
    private LinearSearch(){
        System.out.println("构造函数被调用");
    }

    /**
     * @param data  目标数组
     * @param target  目标值
     * @return 返回 目标索引
     */
    public static <E>  int search(E[] data, E target){
        for (int i = 0; i < data.length; i++) {
            if (data[i].equals(target)){
                return i;
            }

        }
        return -1;
    }

    public static void main(String[] args) {
        int n = 10000;
        Integer[] data = ArrayGenerator.generateOrderedArray(n);
        long start = System.currentTimeMillis();
//        System.out.println(start);
        for (int i = 0; i < 100; i++) {
            LinearSearch.search(data, n);
        }
        long end = System.currentTimeMillis();
        System.out.println(end-start);

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值