matlab-day06

数据读取

clear all;
close all;
clc;
load matdata; % 导入mat文件的所有数据 , 文件名是matdata
a = [12, 3, 4]
disp(a);
% 利用高斯分布生成数据
aver1 = [8 3]; % 指定均值
covar1 = [2 0; 0 2.5]; % 2维数据的协方差  当协方差相同的时候就是方差
data = mvnrnd(aver1, covar1, 10)
disp(data);
% 存储
save matdata data a;

text 格式

clear all;
close all;
clc;
a = load('txtdata.txt')
disp(a);
b = [1 ,2 , 3, 4, 10, 12];
save txtdata.txt -ascii b; % 存储b变量 指定编码方式

xls格式

clear all;
close all;
clc;
a = xlsread('xlsdata.xls')
a = a + 1;
disp(a);
xlswrite('xlsdata.xls', a); % 存储a变量

xlsx

clear all;
close all;
clc;
a = xlsread('data.xlsx', 'Sheet2')% 读取Sheet2
a = a + 1;
disp(a);
xlswrite('data.xlsx', a); % 存储a变量


csv

clear all;
close all;
clc;
a = csvread('csvdata.csv')
disp(a);
a = a + 10
csvwrite('csvdata.csv', a);

在这里插入图片描述
在这里插入图片描述

鸢尾花数据最值归一化

%%min-max归一化方法
clear all;
close all;
clc;
fishertable=readtable('fisheriris.csv');%导入样本数据,样本数据为Table型
SepalLengthMat= fishertable. SepalLength;%取Table型数据的SepalLength的属性值,转化为矩阵形式
NorSepalLength= mapminmax(SepalLengthMat');%对SepalLength数据进行归一化处理
NorSepalLength= NorSepalLength';%行矩阵变为列矩阵
SepalWidthMat= fishertable. SepalWidth;%取Table型数据的SepalWidth的属性值,转化为矩阵形式
NorSepalWidth= mapminmax(SepalWidthMat');%对SepalWidth数据进行归一化处理
NorSepalWidth= NorSepalWidth';%行矩阵变为列矩阵
PetalLengthMat= fishertable. PetalLength;%取Table型数据的PetalLength的属性值,转化为矩阵形式
NorPetalLength= mapminmax(PetalLengthMat');%对PetalLength数据进行归一化处理
NorPetalLength= NorPetalLength';%行矩阵变为列矩阵
PetalWidthMat= fishertable. PetalWidth;%取Table型数据的PetalWidth的属性值,转化为矩阵形式
NorPetalWidth= mapminmax(PetalWidthMat');%对PetalWidth数据进行归一化处理
NorPetalWidth= NorPetalWidth'; %行矩阵变为列矩阵
Norfishertable=table(NorSepalLength, NorSepalWidth, NorPetalLength, NorPetalWidth, fishertable.Species);%将归一化处理后的数据转化为Table型数据,且添加上已有的标签

鸢尾花数据zscore标准化

%%Z-score归一化方法
clear all;
close all;
clc;
fishertable=readtable('fisheriris.csv');%导入样本数据,样本数据为Table型
SepalLengthMat= fishertable.SepalLength;%取Table型数据的SepalLength的属性值,转化为矩阵形式
NorSepalLength= zscore (SepalLengthMat');%对SepalLength数据进行归一化处理
NorSepalLength= NorSepalLength';%行矩阵变为列矩阵
SepalWidthMat= fishertable.SepalWidth;%取Table型数据的SepalWidth的属性值,转化为矩阵形式
NorSepalWidth= zscore (SepalWidthMat');%对SepalWidth数据进行归一化处理
NorSepalWidth= NorSepalWidth';%行矩阵变为列矩阵
PetalLengthMat= fishertable.PetalLength;%取Table型数据的PetalLength的属性值,转化为矩阵形式
NorPetalLength= zscore (PetalLengthMat');%对PetalLength数据进行归一化处理
NorPetalLength= NorPetalLength';%行矩阵变为列矩阵
PetalWidthMat= fishertable.PetalWidth;%取Table型数据的PetalWidth的属性值,转化为矩阵形式
NorPetalWidth= zscore (PetalWidthMat');%对PetalWidth数据进行归一化处理
NorPetalWidth= NorPetalWidth'; %行矩阵变为列矩阵
Norfishertable=table(NorSepalLength, NorSepalWidth, NorPetalLength, NorPetalWidth, fishertable.Species);%将归一化处理后的数据转化为Table型数据,且添加上已有的标签

MATLAB 实现 KNN算法

% 对电影类型进行分类(动作片-->打斗镜头  ;;  爱情片-- >接吻镜头数)
clear all;
close all;
clc;
% 利用高斯分布生成数据
aver1 = [8 3]; % 指定均值
covar1 = [2 0; 0 2.5]; % 2维数据的协方差  当协方差相同的时候就是方差
data1 = mvnrnd(aver1, covar1, 100);
% 因为打斗镜头数或者接吻镜头数不能为负数, 所以我们要对生成数据进行处理, 负数都变成0
% 双层循环遍历数组 <0 就赋值为0
for i = 1:100
    for j = 1:2
        if data1(i, j) < 0
             data1(i, j) = 0;
        end
    end
end
plot(data1(:, 1), data1(:, 2), '+');


% knn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值