回归分析-常用统计量含义解析

线性回归模型预测好坏,评判标准主要观察回归直线与各观测点的接近程度(即直线的拟合优度)。但是如何量化它们之间的接近程度呢?可使用以下常用统计量进行衡量。各统计量分解如下:

  • SST总平方和                 \large SST=\sum \left (y_{i} -\bar{y}\right )^{2}
  • SSR回归平方和             \large SSR=\sum \left (\widehat{y}_{i} -\bar{y}\right )^{2}
  • SSE残差平方和             \large SSE=\sum \left (y_{i} -\widehat{y}_{i}\right )^{2}

回归平方和是回归值与均值的离差平方和,可以看做由于自变量\large x的变化引起的\large y的变化(即\large y\large x的影响);

残差平方和(或称误差平方和)是真实值与回归值的离差平方和,它是除了\large x\large y的线性影响之外的其他因素引起的\large y的变化部分,是不能由回归直线来解释的\large y_{i}的变差部分(即\large y受其他因素的影响,如\large x\large y的非线性影响、测量误差等)。残差平方和描述了真实值与预测值之间的差异程度

三个平方和的关系为:

总平方和(SST)= 回归平方和(SSR)+ 残差平方和(SSE)

 

  • 判定系数   \large R^{2}=\frac{SSR}{SST}=\frac{\sum \left (\widehat{y}_{i} -\bar{y}\right )^{2}}{\sum \left (y_{i} -\bar{y}\right )^{2}} = 1-\frac{\sum \left (y_{i} -\widehat{y}_{i}\right )^{2}}{\sum \left (y_{i} -\bar{y}\right )^{2}}

判定系数\large R^{2}是对估计的回归方程拟合优度的度量。(即测度了回归直线对观测数据的拟合程度)

  1. 若所有观测点都落在回归直线上,残差平方和SSE=0,则\large R^{2}=1,拟合是完全的;
  2. 如果\large y的变化与\large x无关,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值