题目:跳转至 621. 任务调度器
给你一个用字符数组 tasks 表示的 CPU 需要执行的任务列表。其中每个字母表示一种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在 1 个单位时间内执行完。在任何一个单位时间,CPU 可以完成一个任务,或者处于待命状态。
然而,两个 相同种类 的任务之间必须有长度为整数 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。
你需要计算完成所有任务所需要的 最短时间 。
示例 1:
输入:tasks = [“A”,“A”,“A”,“B”,“B”,“B”], n = 2
输出:8
解释:A -> B -> (待命) -> A -> B -> (待命) -> A -> B 在本示例中,两个相同类型任务之间必须间隔长度为 n = 2 的冷却时间,而执行一个任务只需要一个单位时间,所以中间出现了(待命)状态。
示例 2:
输入:tasks = [“A”,“A”,“A”,“B”,“B”,“B”], n = 0
输出:6
解释:在这种情况下,任何大小为 6 的排列都可以满足要求,因为 n = 0
[“A”,“A”,“A”,“B”,“B”,“B”]
[“A”,“B”,“A”,“B”,“A”,“B”]
[“B”,“B”,“B”,“A”,“A”,“A”]
…
诸如此类
示例 3:
输入:tasks = [“A”,“A”,“A”,“A”,“A”,“A”,“B”,“C”,“D”,“E”,“F”,“G”], n = 2
输出:16
解释:一种可能的解决方案是:A -> B -> C -> A -> D -> E -> A -> F -> G -> A -> (待命) -> (待命) -> A -> (待命) -> (待命) -> A
提示:
- 1 <= task.length <= 104
- tasks[i] 是大写英文字母
- n 的取值范围为 [0, 100]
class Solution {
public:
int leastInterval(vector<char>& tasks, int n) {
}
};
思路:
暴力解决,先统计各个任务出现的次数,从大到小排序,每次取出间断n相等数量的数组合,各自数量减1,如果没有符合的任务填空则待命状态数量加1,总时长就是任务总数加上待命出现的次数。
class Solution {
public:
int leastInterval(vector<char>& tasks, int n) {
int res=tasks.size();
if(n==0)
return res;
unordered_map<char,int> mp;
for(auto &x:tasks)
mp[x]++;
priority_queue<int> reaminTasks;
for(auto [c,n]:mp)
reaminTasks.push(n);
int standby=0;
while(!reaminTasks.empty()){
vector<int> tmp;
for(int i=0;i<=n;++i){
int maxTaskSize=0;
if(!reaminTasks.empty()){
maxTaskSize=reaminTasks.top();
reaminTasks.pop();
--maxTaskSize;
if(maxTaskSize>0)
tmp.push_back(maxTaskSize);
}
else if(!tmp.empty())
++standby;
}
for(auto &x:tmp)
reaminTasks.push(x);
}
return res+standby;
}
};