有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出两块 最重的 石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
- 如果 x == y,那么两块石头都会被完全粉碎;
- 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头的重量。如果没有石头剩下,就返回 0。
示例:
输入:[2,7,4,1,8,1]
输出:1
解释:
先选出 7 和 8,得到 1,所以数组转换为 [2,4,1,1,1],
再选出 2 和 4,得到 2,所以数组转换为 [2,1,1,1],
接着是 2 和 1,得到 1,所以数组转换为 [1,1,1],
最后选出 1 和 1,得到 0,最终数组转换为 [1],这就是最后剩下那块石头的重量。
提示:
- 1 <= stones.length <= 30
- 1 <= stones[i] <= 1000
class Solution {
public:
int lastStoneWeight(vector<int>& stones) {
}
};
思路:
这题思路还是比较清晰的,每次都选出最重的两块,没被粉碎的继续放入,那就优先队列。
class Solution {
public:
int lastStoneWeight(vector<int>& stones) {
priority_queue<int> que;
for(auto x:stones)
que.push(x);
while(que.size()>1){
int bigone=que.top();
que.pop();
int smallone=que.top();
que.pop();
if(bigone>smallone)
que.push(bigone-smallone);
}
if(que.empty())
return 0;
return que.top();
}
};
很惊讶的在提交记录里发现 6 个月前用大顶堆提交过一次,不过又忘记了,拎过来再复习一下。
class Solution {
public:
void buildMaxHeapify(vector<int>& vec,int heapSize){
for(int i=heapSize/2;i>=0;i--){ //从最后一个有子节点的根开始循环
MaxHeapify(vec,i,heapSize);
}
}
void MaxHeapify(vector<int>& vec,int i,int heapSize){
int l=2*i+1,r=2*i+2,largest=i; //l:左子树 r:右子树 largest:根节点
if(l<heapSize && vec[l]>vec[largest])
largest=l;
if(r<heapSize && vec[r]>vec[largest])
largest=r;
if(largest!=i){ //树往下走,如果本来就是根节点那最大堆完成,如果交换了,下面的树可能也要重排
swap(vec[largest],vec[i]);
MaxHeapify(vec,largest,heapSize); //以交换后的节点为根节点进行重排
}
}
int lastStoneWeight(vector<int>& stones) {
int siz=stones.size();
buildMaxHeapify(stones,siz);
int remain;
int tmpmax;
for(int i=stones.size()-1;i>0;--i){
//获取第一个最大值
tmpmax=stones[0];
swap(stones[0],stones[i]);
--siz;
MaxHeapify(stones,0,siz);
remain=tmpmax-stones[0];
stones[0]=remain;
MaxHeapify(stones,0,siz);
}
if(!stones.empty())
return stones[0];
else
return 0;
}
};
以下图示借鉴了菜鸟教程中的。
大顶堆(大根堆,最大堆),顾名思义,其根节点的值大于等于左右两个子树的结点值,且为完全二叉树,如下图所示:
把堆中结点按层序编号表示为:
[96, 65, 91, 60, 35, 77, 81, 13, 10, 30, 20, 31, 65, 46, 22]
因为是完全二叉树,所以对结点 i,其左子树结点为 2i+1,右子树结点为 2i+2。根据大顶堆定义可得:arr[i]>=arr[2i+1] && arr[i]>=arr[2i+2]。
堆排序中,最重要两个操作就是初始化堆以及调整堆。其中构造初始堆是对所有的非叶结点都进行调整(构建出一个完全二叉树,保证根结点大于等于左右结点),调整堆就是交换第一个元素(根节点最大值)和最后一个元素,输出交换过的最后一个元素,把剩余元素重新调整为最大堆,直至输出最后一个元素。所以,大顶堆排序后其实是一个升序排序的数列。
下面的动图均展示了数组初始化为堆以及排序的过程。