注意:本文引用自专业人工智能社区Venus AI
更多AI知识请参考原站 ([www.aideeplearning.cn])
DBSCAN是在1990年代后期推出的一种聚类方法,它迅速成为基于密度的聚类技术中最受欢迎和广泛使用的算法之一。与传统的聚类方法如K-means不同,DBSCAN的主要优势在于其能够识别出任意形状的聚类,并有效地处理噪声。在机器学习和数据分析领域,该算法常被用于其高鲁棒性和对形状的不受限制的处理能力。
1. 算法解读:
DBSCAN是一种基于密度的聚类方法,其基本思想是:在一个特定的半径内有足够多的点,则这些点构成一个“密集”区域。根据这一思想,DBSCAN将数据点分类为核心点、边界点和噪声点。这些基本概念的解释如下:
核心点:在其半径ε内,存在超过 MinPts 数量的其他点,那么这个点被称为核心点。这意味着核心点周围有足够多的邻居,构成了一个“密集”区域。
边界点:在其半径ε内有少于MinPts数量的邻居点,但是它离某个核心点足够近,可以被归入某个聚类。
噪声点:既不是核心点,也不是边界点被认为是噪声点,它们不属于任何聚类。
MinPts:MinPts是一个用户定义的参数,表示一个点的邻域中最小的数据点数量,用于判断该点是否为核心点。如果一个点的半径ε内的邻居点数量不少于MinPts,那么这个点被认为是核心点,反之则不是。
DBSCAN首先任意选择一个点,并检查其邻居点的数量。如果该点是一个核心点,一个新的聚类将开始。否则,该点被标记为噪声。然后,DBSCAN会继续探索这个核心点的邻居,并将它们添加到同一个聚类中。这个过程递归地继续