Django-haystack检索使用,根据原作者文章该写了部分说明

搜索

  搜索可以使用最原始的模糊匹配的like方式进行搜索。当然这种搜索方式对于一些小量的数据是非常合适的。但是随着数据量越来越大。这时候我们就需要使用搜索引擎了。搜索引擎会将所有需要搜索的数据使用算法做一个索引,以后搜索的时候就只需要根据这个索引即可找到相应的数据。搜索引擎做索引的过程会比较慢,甚至占用空间,但是一旦索引建立完成,那么以后再搜索的时候就会很快了。

django-haystack插件概述

  这个插件是专门给Django提供搜索功能的。django-haystack提供了一个搜索的接口,底层可以根据自己的需求更换搜索引擎。他其实有点类似于Django中的ORM插件,提供了一个操作数据库的接口,但是底层具体使用哪个数据库是可以自己设置的。

  django-haystack支持的搜索引擎有Solr、Elasticsearch、Whoosh、Xapian等。Whoosh是基于纯Python的搜索引擎,检索速度快,集成方便。

安装

1 pip3 install django-haystack
2 pip3 install whoosh

集成步骤

 1.在项目中安装django-haystack,在settings.py

 

 1 INSTALLED_APPS = [
 2     'django.contrib.admin',
 3     'django.contrib.auth',
 4     'django.contrib.contenttypes',
 5     'django.contrib.sessions',
 6     'django.contrib.sites',
 7 
 8     # 添加
 9     'haystack',
10 ]

 2.设置搜索引擎,在settings中

1 HAYSTACK_CONNECTIONS = {
2     'default': {
3         # 设置haystack的搜索引擎
4         'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine',
5         # 设置索引文件的位置
6         'PATH': os.path.join(BASE_DIR, 'whoosh_index'),
7     }
8 } 

如果不想每次数据操作后都要手动的创建索引,可以在settings中配置: 

1 # 增删改查后自动创建索引
2 HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'

3.创建索引类 

   在模型所属的app下创建一个search_indexes.py文件,然后创建索引类。假如要给News app创建索引,代码如下:

class NewsIndex(indexes.SearchIndex,indexes.Indexable):
    text = indexes.CharField(document=True,use_template=True)

    def get_model(self):
        return News

    def index_queryset(self, using=None):
        return self.get_model().objects.all()

4.添加url映射 

1 urlpatterns = [
2     path('',views.index,name='index'),
3     # 添加search的url映射
4     path('search/',include('haystack.urls')),
5     path('news/', include("apps.news.urls")),
6 ] 

5.添加模板

   在templates文件夹下创建以下结构的目录:

1 templates
2     search
3         indexes
4             news(app的名字)
5                 news(模型的名字)_text.txt 

   然后在news_text.txt中添加需要被索引的字段

1 # 根据标题和内容文本
2 {{ object.title }}
3 {{ object.content }}

  紧接着templates文件下创建search.html模板文件,haystack会自动在templates文件下寻找这个模板文件渲染,并且会给这个模板传入page/paginator/query等参数,django内置的分页与查询的关键字。我们可以通过page.object_list获取到查询出来的数据。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

<ul class="recommend-list">

    {% for result in page.object_list %}

        {% with result.object as news %}

            <li>

                <div class="thumbnail-group">

                    <a href="#">

                        <img src="{{ news.thumbnail }}" alt="">

                    </a>

                </div>

                <div class="news-group">

                    <p class="title">

                        <a href="#">{{ news.title }}</a>

                    </p>

                    <p class="desc">

                        {{ news.desc }}

                    </p>

                    <p class="more">

                       <span class="category">{{ news.caetgory.name }}</span>

                        <span class="pub-time">{{ news.pub_time }}</span>

                        <span class="author">{{ news.author.username }}</span>

                    </p>

                </div>

            </li>

        {% endwith %}

    {% endfor %}

</ul>

6.建立索引  

1 python manage.py rebuild_index 

 7.使用jieba分词替换Whoosh默认的分词

  Whoosh默认是采用正则表达式进行分词的,这对于英文词汇适用,但是中文支持的不好,这里替换为jieba分词,jieba分词库对中文却支持的好。

  安装

1 pip3 install jieba

  

  安装完成后,复制()你的python所在的安装目录)E:\python\Lib\site-packages\haystack\backends\whoosh_backend.py其中的代码,然后在当前目录创建一个名叫whoosh_cn_backend.py文件,把刚刚复制的代码粘贴进去,然后再添加以下代码: 

import jieba
from whoosh.analysis import Tokenizer, Token

class ChineseTokenizer(Tokenizer):
    def __call__(self, value, positions=False, chars=False,
                 keeporiginal=False, removestops=True,
                 start_pos=0, start_char=0, mode='', **kwargs):
        t = Token(positions, chars, removestops=removestops, mode=mode,
                  **kwargs)
        seglist = jieba.cut(value, cut_all=True)
        for w in seglist:
            t.original = t.text = w
            t.boost = 1.0
            if positions:
                t.pos = start_pos + value.find(w)
            if chars:
                t.startchar = start_char + value.find(w)
                t.endchar = start_char + value.find(w) + len(w)
            yield t

def ChineseAnalyzer():
    return ChineseTokenizer()

  然后再将之前的代码中的分析器analyzer=StemmingAnalyzer()替换为analyzer=ChineseAnalyzer()就行了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值