深度学习网络复现
文章平均质量分 96
WALL-SQ
Something we got, something we lost
展开
-
YOLOv3代码复现
1. 数据集:包括数据集选取与数据增强方案确定 笔者使用COCO2014数据集进行Darknet-53的预训练,使用VOC2007+2012的混合数据集进行目标检测的训练[有条件的同学当然也可以使用ImageNet数据集预训练,再用COCO2014进行目标检测的训练]。 笔者这么安排的目的在于,对骨干网络预训练的时候,我们需要训练的是提取特征的能力,因此数据越丰富越好,模型可以从丰富的数据中挖掘共性,提高泛化能力。而在进行目标检测的任务训练时,我们需要借助骨干网络抽取的特...原创 2021-11-17 11:15:39 · 3302 阅读 · 0 评论 -
YOLOv3论文精读
摘要 我们对YOLO做了一些更新!我们使用了一系列小的设计上的改变来让它变得更好。我们也训练这个新的网络,这个新网络很有趣。这比上次提出的模型(YOLOv2)稍微大了一些,但是更加准确了。但是别担心,它仍然是足够快的。对于320*320分辨率的图像,YOLOv3对每一张图片运行只需要22ms,并且保持着28.2的mAP,这和SSD算法一样准确但是速度快了三倍。当我们使用这个旧的0.5为IoU阈值时的mAP检测指标时,YOLOv3是很好的。在Titan X显卡上可以以51ms一次推理的速...原创 2021-11-15 19:44:12 · 3659 阅读 · 0 评论 -
YOLOv1 论文精读
摘要我们提出了YOLO,这是一个目标检测的新方法。目标检测领域的以往工作就是对分类器稍加调整以用于检测。相反,我们是将目标检测视为一个回归问题,这个问题是得到空间上分离的包围框(bounding boxes)以及和这些框相联系的类别概率。一个单独的神经网络就可以在一次评估中直接从整幅图像中预测bounding boxes以及对应的类别概率。由于整个检测的流程是在一个单独的网络中完成的,它能够依靠检测的表现结果进行端到端的直接优化。依靠检测的表现结果进行端到端的直接优化:个人理解指的就是我们可以依靠检原创 2021-09-29 19:25:58 · 926 阅读 · 0 评论 -
YOLOv1 代码复现
1. YOLO v1基本检测思想 Two-stage目标检测算法将目标检测与识别的过程分为候选区域提取与目标识别两个步骤来做,由于在做具体分类识别和位置回归前多了一步候选区域提取,因此Two-stage目标检测算法的识别率和候选框精确度是比较高的,但对性能的消耗是非常巨大的。而YOLO v1作为YOLO系列算法的开山之作,创造性地提出不再预先进行候选区域(Proposal Region)的提取,而是直接将输入图片以网格的方式进行划分,由每个网格负责预测中心点落在它内部的物体。不过也正是因...原创 2021-02-01 15:35:12 · 8843 阅读 · 49 评论