数据结构之深度优先搜索

深度优先搜索(Depth-First Search, DFS)是一种用于遍历或搜索树或图的算法。这个算法会尽可能深地搜索树的分支。当节点v的所在边都已被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这个过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。

DFS 的基本思想

1、选择:从某个顶点v出发,选择一条从v出发的未探索的边。
2、标记:标记这条边为已探索,并沿着这条边移动到下一个顶点。
3、归:继续深度优先搜索,直到当前顶点v的所有边都已探索完毕。
4、回溯:如果顶点v的所有边都已探索完毕,回溯到v的前一个顶点,并尝试v的其他未探索的边。

DFS 的应用

1、图的遍历:可以用来遍历或搜索图中的所有顶点。
2、解决迷宫问题:寻找从起点到终点的路径。
3、拓扑排序:在有向无环图(DAG)中,对所有顶点进行线性排序,使得对于任何从顶点u到顶点v的有向边,u在排序中都出现在v的前面。
4、检测环:在图中检测是否存在环。

DFS 的实现

DFS 可以通过递归或栈(显式或隐式)来实现。以下是使用递归方式实现DFS的基本伪代码:

def DFS(visited, graph, node):
    if node not in visited:
        print(node)
        visited.add(node)
        for neighbour in graph[node]:
            DFS(visited, graph, neighbour)

# 示例图,以邻接表形式表示
graph = {
    'A': ['B', 'C'],
    'B': ['D', 'E'],
    'C': ['F'],
    'D': [],
    'E': ['F'],
    'F': []
}

visited = set()
DFS(visited, graph, 'A')

在这个示例中,我们从节点’A’开始进行深度优先搜索。visited集合用于跟踪已经访问过的节点,以防止重复访问和陷入无限循环。graph是一个以邻接表形式表示的图。

注意事项

当图不是连通图时,需要选择多个未访问的顶点作为起始点进行DFS,以确保所有顶点都被访问到。
DFS可能会因为图的结构而访问到同一顶点多次(尤其是在有环的图中),但每个顶点在visited集合中只会被记录一次。
DFS的时间复杂度依赖于图的结构和实现的具体细节,但通常是O(V + E),其中V是顶点的数量,E是边的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DKPT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值