OpenCV+Python 用pytesseract识别图片中的英文

上一个博客中我已经阐述了安装pytesseract的方法,这次直接来简单调用一下用它来识别一下图片中的字符:

import cv2
import pytesseract
from PIL import Image

img = cv2.imread("paper.png")
text = pytesseract.image_to_string(Image.open("paper.png"))
print(text)
cv2.imshow("result",img)
cv2.waitKey(0)

ok,就这么简单:

来看一下实际效果:

参考资源链接:[Python图像处理与OCR识别教程](https://wenku.csdn.net/doc/1qjnyeqbmc?utm_source=wenku_answer2doc_content) 在Python中实现图像文字识别功能,可以通过结合opencv-pythonpytesseract库来完成。首先,需要安装OpenCV库,用于图像处理,然后安装pytesseract库,它是Python的Tesseract OCR接口。此外,还需要安装Tesseract OCR引擎本体,因为pytesseract库是基于它的。可以通过如下命令安装所需库: \n```bash pip install opencv-python pytesseract \n``` \n接下来,可以使用OpenCV进行图像预处理,例如图像的灰度化、二值化和去噪,以提高OCR的准确性。然后,使用pytesseract库调用Tesseract OCR引擎来识别处理过的图像中的文字。以下是一个简单的示例代码: \n```python import cv2 import pytesseract from matplotlib import pyplot as plt # 加载图像 img = cv2.imread('path_to_image.png') # 将图像转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 应用二值化 _, binary = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # 使用pytesseract识别二值化图像中的文字 text = pytesseract.image_to_string(binary, lang='chi_sim+eng') # 显示原图和二值化图 plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.title('Original Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(binary, cmap='gray') plt.title('Binarized Image'), plt.xticks([]), plt.yticks([]) plt.show() # 打印识别到的文字 print( 参考资源链接:[Python图像处理与OCR识别教程](https://wenku.csdn.net/doc/1qjnyeqbmc?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值