求两个数的最大公因数与最小公倍数

如果计算两个数的最大公因数和最小公倍数?

此处我主要介绍辗转相除法求解最大公因数与最小公倍数
首先我们需要知道辗转相除法的思想:

对于两个数字a和b有式子(a>b):a=b*q+r
那么a和b的最大公因数就是b和r的最大公因数。

下面简单证明一下
充分性:假设d是a和b的最大共因数那么一定有:
a=dx1(1)
b=d
x2(2)
由于a=bq+r 那么r=a-bq将(1)(2)代入则该式子变成:
r=dx1-dx2q = d(x1-qx2)
这样可与看出来r可以整除d,由于已知b可以整除d
即{r= d(x1-qx2) , b=dx2},所以d也是r和b的公因数,充分性成立。

同理可以证明其必要性。

这样辗转相除的原理可见一斑。那么我们可以将其应用于求两个数的公因数。

a=bq1+r (r!=0)
b=r
q2+r2 (r2!=0)
r=r2q3+r3 (r3!=0)

rn-2=rn-1
qn+rn (rn=0)
此时rn-1就是a和b的最大公因数。
代码如下:

public static int commonFactor(int a,int b)
	{
		if(b>a)
		{
			int temp=a;
			a=b;
			b=temp;
		}
		if(b==0)
		{
			return -1;
		}
		while(b!=0)
		{
			int temp=b;
			b=a%b;
			a=temp;
		}
		return a;
	}

最小公倍数比较好求,使用a和b的乘积除以其最大公因数即为结果:

	public static int commonMultiple(int a,int b)
	{
		if(a==0||b==0)
		{
			return -1;
		}
		return a*b/commonFactor(a, b);
	}

注意:任何数和0的最大公因数和最小公倍数都是无意义的,所以代码上都返回了-1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值