如果计算两个数的最大公因数和最小公倍数?
此处我主要介绍辗转相除法求解最大公因数与最小公倍数
首先我们需要知道辗转相除法的思想:
对于两个数字a和b有式子(a>b):a=b*q+r
那么a和b的最大公因数就是b和r的最大公因数。
下面简单证明一下
充分性:假设d是a和b的最大共因数那么一定有:
a=dx1(1)
b=dx2(2)
由于a=bq+r 那么r=a-bq将(1)(2)代入则该式子变成:
r=dx1-dx2q = d(x1-qx2)
这样可与看出来r可以整除d,由于已知b可以整除d
即{r= d(x1-qx2) , b=dx2},所以d也是r和b的公因数,充分性成立。
同理可以证明其必要性。
这样辗转相除的原理可见一斑。那么我们可以将其应用于求两个数的公因数。
a=bq1+r (r!=0)
b=rq2+r2 (r2!=0)
r=r2q3+r3 (r3!=0)
…
rn-2=rn-1qn+rn (rn=0)
此时rn-1就是a和b的最大公因数。
代码如下:
public static int commonFactor(int a,int b)
{
if(b>a)
{
int temp=a;
a=b;
b=temp;
}
if(b==0)
{
return -1;
}
while(b!=0)
{
int temp=b;
b=a%b;
a=temp;
}
return a;
}
最小公倍数比较好求,使用a和b的乘积除以其最大公因数即为结果:
public static int commonMultiple(int a,int b)
{
if(a==0||b==0)
{
return -1;
}
return a*b/commonFactor(a, b);
}
注意:任何数和0的最大公因数和最小公倍数都是无意义的,所以代码上都返回了-1。