题目
思路
首先我们清楚,交换任意两个相邻大臣的位置,对其他大臣获得的金币数不会造成影响。题目要求使得获得奖赏最多的大臣,所获奖赏尽可能的少,也就是让最大值尽可能小,并且国王固定在队伍的最前面,所以我们考虑后面的大臣即可。
在n(n≥2)个大臣中找出任意相邻的两个大臣A与B,记他们左右手的值分别为 a L a_{L} aL 、 a R a_{R} aR 、 b L b_{L} bL、 b R b_{R} bR ,以及在A之前的所有大臣和国王左手上数字的乘积为 p r e pre pre
前乘积 | A | B |
---|---|---|
p r e pre pre | a L a_{L} aL 、 a R a_{R} aR | b L b_{L} bL 、 b R b_{R} bR |
假如此时A和B获得的金币数的最大值最小,则我们有不等式
m a x ( p r e ÷ a R , p r e × a L ÷ b R ) ≤ m a x ( p r e ÷ b R , p r e × b L ÷ a R ) max(pre \div a_{R}