自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

vector的博客

送给自己一个完整的知识体系

  • 博客(393)
  • 资源 (18)
  • 收藏
  • 关注

原创 【小样本基础】深度学习中的元学习:元学习的理解、经典MAML算法、用元学习解决具体问题的思路、元学习的分类

本篇博客主要是分享一篇22年11月出来的元学习综述,由于这一篇综述的篇幅很长,可能对于之前不了解元学习的同学们来说会很晦涩,因此我补充了一些调研资料和例子,希望通过这篇博客,能够让大家对元学习有一个基本的理解。

2023-02-07 14:46:24 985

原创 【小样本基础】Meta-Learning 元学习流程:图解MAML代码

本篇博客将从理论和实践的角度介绍元学习算法,分别从论文,代码,流程图,以及内外循环四个角度介绍了MAM的参数更新过程。

2022-10-02 20:36:49 2631

原创 【论文分享】图上的小样本学习综述:Few-Shot Learning on Graphs: A Survey

摘要:图表示学习由于其卓越的性能在许多实际应用中引起了极大的关注。然而,针对特定任务的监督图表示学习模型往往存在标签稀疏性问题,因为对数据进行标签总是耗时耗资源。基于此,人们提出了图上的小样本学习(FSLG),它结合了图表示学习和小样本学习的优点,以解决在面对有限的标注数据挑战时性能下降的问题。最近有很多关于FSLG的研究。在本文中,我们以一系列方法和应用的形式全面地综述了这些工作。具体来说,我们首先介绍了FSLG的挑战和基础,然后根据节点、边和图这三种不同粒度层次的图挖掘任务,对FSLG现有的工作进行了分

2022-07-07 16:14:13 1093

原创 【文本数据挖掘】中文命名实体识别:HMM模型+BiLSTM_CRF模型(Pytorch)【调研与实验分析】

命名实体识别(Named Entity Recognition,NER)是自然语言处理(Natural Language Processing,NLP)领域的子任务,通常解释为从一段非结构化文本中,将那些人命名实体识别(Named Entity Recognition, NER)是指从自由文本中识别出属于预定义类别的文本片段......

2022-06-22 19:54:08 2420 4

原创 【论文分享】小样本半监督图结点分类模型 Meta-PN:Meta Propagation Networks for Graph Few-shot Semi-supervised Learning

本文提出了一种新的图元学习框架:元传播网络(Meta- PN),用于解决小样本半监督节点分类问题。该框架由两个部分构成 1. Adaptive Label Propagator (Meta Learner):利用目标模型的反馈来调整其传播策略,以在未标记节点上推断出准确的伪标签。2. Feature-label Transformer (Target Model): 吸收伪标记节点的结构和特征知识预测标签,从而解决了小样本半监督学习背后的挑战。

2022-05-19 14:54:04 838 5

原创 【小样本基础】「MAML」 VS 「Model-Pre-training」MAML与预训练的区别

MAML 和 Reptile 是比较容易实现的Meta Learning 算法(Reptile是MAML的变形),它们不改变深度神经网络的结构,只改变网络的初始化参数。通过之前的学习我们知道,预训练的方法也是进行参数的初始化,那么预训练和MAML有什么不一样呢?这篇博客将对此进行总结。

2022-05-16 14:06:26 835

原创 【小样本基础】「Meta Learning」 VS 「Machine Learning」比较元学习与传统机器学习的异同

今天学习了李宏毅的课程,通过将 meta learning 与 machine learning 进行对比,有了更深的理解,用这篇博客做一个记录。

2022-05-10 16:56:03 1183

原创 【论文分享】一个用于现代cpu的多正则表达式匹配器:Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs

题目:Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs链接:https://arxiv.org/abs/2102.11165源码:https://github.com/intel/hyperscan报告:https://www.youtube.com/watch?v=Le67mP-jIa8会议:USENIX (CCF-A)时间:2019摘要:正则表达式匹配是现代网络安全应用的关键功能之一。不幸的是,它经常成为性能瓶颈,..

2022-04-30 15:39:56 1435 2

原创 【论文分享】★★★「SOTA」小样本图神经网络分类模型 HGNN:Hybrid Graph Neural Networks for Few-Shot Learning

摘要:本文提出了一种新的混合GNN (HGNN)模型,该模型由两个GNN组成,一个PGNN和一个IGNN。IGNN通过实例级消息传递专注于异常值识别和中和(离群值)。PGNN在类原型级操作,以确保不同的类在GNN适应的嵌入空间中可以很好地分离(类间重叠)其他:本文的GNN与之前的GNN之间的关键区别是本文的GNN不包含标签信息。

2022-04-11 20:10:48 1259 9

原创 【调研】用「图神经网络」 解决「小样本」 分类问题

本篇博客要分享的是使用「**图神经网络**」 解决「**小样本**」 分类问题的5个模型,每个模型都分享了单独的博客笔记,并从这些模型中总结出实现 **图神经网络小样本网络** 需要从哪几个方面考虑,以及后续学习路线应该如何安排。

2022-04-06 11:05:12 2102 4

原创 【一起入门MachineLearning】中科院机器学习第*课-概率图模型:隐马尔可夫模型(前向算法+维特比算法+条件随机场)

专栏介绍:本栏目为 “2021秋季中国科学院大学周晓飞老师的机器学习” 课程记录,不仅仅是课程笔记噢~ 如果感兴趣的话,就和我一起入门Machine Learning吧????背景介绍频率派发展为统计机器学习贝叶斯派发展为概率图模型,围绕着怎么求后验概率展开。概率图:有向无向动态:增加了time之后有了动态模型,Xi之间不是独立同分布的HMM:隐变量取值离散Kalman Filter:隐变量是线性连续的Particle Filter:隐变量是非线性连续的隐马尔可夫模型

2021-12-26 22:34:38 1723

原创 【一起入门NLP】中科院自然语言处理第16课-简明扼要:红到发紫的prompt是什么?【上】

  前几天自然语言处理课学到了“预训练语言模型”这一章,在最后老师介绍了今年刚刚提出来的Prompt,并强调:这东西现在很火????,想发论文的赶紧行动。由于和我的研究方向相关,因此打算对Prompt做一个系统的调研。我们现在开始吧!目录从四大范式到Prompt第一范式:特征工程第二范式:架构工程第三范式:目标工程第四范式:Prompt挖掘工程为什么说Prompt适用于小样本学习甚至零样本学习?从四大范式到Prompt  在NLP的发展过程中,经历了4大范式,这里的范式不禁让人想起数据库中学到范式

2021-12-06 10:10:56 3298 3

原创 【测开求职】校招生在面测开前需要了解的信息

博主在2021年拿到了字节测开实习的offer,实习时长4个月,并于2023年秋招拿到了字节测开的校招offer,仅以本专栏记录对该岗位的所思所想。

2024-04-05 15:11:46 451

原创 【测开求职】2023秋招百度三面面经

发面经攒运气💗 一二面和其他同学发的面经差不多,比较常规,但是我的三面好像和我看到的面经不一样,总结一下供大家参考~上来面试官就直说,“我来看一下你之前的面评哦”,估计是前面有面试官说我的算法能力不够,上来好像都没做自我介绍就直接让做算法题了。算法题:给定一个txt文件,每一行存了若干句子,统计:1. 单词出现的次数 2. 单词的种类 3. 每种单词出现的次数吭哧吭哧写出来了,但是忘记怎么读一个TXT文件了,为了节约时间直接用数组表示了,还是被面试官指出来了😂。

2024-03-03 22:46:57 707 2

原创 【测开求职】2023秋招快手一面面经

已经过了百度测开三面,快手这个一面比百度的要难很多,可能也是遇到了比较严格的面试官,感觉其他面经没有这么难。30分钟实习,20分钟算法题,20分钟八股,没有问项目。

2024-03-03 22:41:08 529

原创 【调研】人工智能(大模型)生成内容AIGC检测

本篇文章分享近期人工智能生成内容AIGC检测的相关工作,主要介绍大模型的文本生成检测和图片生成检测。

2024-01-10 19:31:45 1010 1

原创 【论文分享】用于恶意域名检测的异质图注意力网络:HANDOM: Heterogeneous Attention Network Model for Malicious Domain Detection

在进行恶意活动时,攻击者所操纵的恶意域之间通常存在较强的时间相关性,也存在基于时间的类似异常行为,如恶意主机访问具有一定规律性和周期性的域,查询时间模式固定。不同主机基于时间访问域形成的数量分布序列t1,从中提取t1 (F1-b)的离散指标,如均值、方差、峰值等,反映访问域的主机数量随时间的变化趋势。我们发现,基于攻击者在网络杀伤链中的行为,攻击者的控制主机和被感染主机组在进行恶意活动时通常具有空间相关性,例如攻击者在攻击的不同阶段使用重叠的被感染主机组来实现恶意行为,导致域查询记录之间存在异常相关性。

2023-11-20 15:59:00 252

原创 【测开求职】面试题:HR面相关的开放性问题

每一面可能都会穿插一些岗位理解的问题,有一些问题是真的挺不好回答的,最好还是提前准备一下,本篇文章总结了在面测试开发岗位中遇到的一些开放性问题

2023-11-19 17:09:43 434 2

原创 【测开求职】面试题:计算机网络 精简版整理

本篇文章整理的是在秋招过程中遇到的计算机网络高频面试题,应付部分中小厂的测试开发工程师面试完全没有问题,如果时间充足的话,建议再看一下笔者的另外一篇文章:[【测开求职】面试题:计算机网络 详细版整理,会让你对整个计算机网络有足够全面深刻的理解,亲测应付各个大厂的面试毫无压力👉

2023-11-08 16:33:24 850

原创 【测开求职】面试题:MySQL 吐血整理

数据库是测开工程师面试中必考的部分,如果没有mysql基础,或者学习过但是忘记了,可以先看第二个部分的MySQL语法,有部分大厂会要求写查询语句。本篇文章包含本次求职过程中遇到的所有MySQL问题,亲测应付各个大厂的测开面试毫无压力👉

2023-11-08 15:30:39 276

原创 【测开求职】面试题:Redis 吐血整理

部分大厂除了要求测开工程师掌握MySQL之外,对Redis也有要求,本篇文章整理了Redis相关的面试题,之前完全没有接触过Redis的朋友们也无需担心,可以看第二个部分的"入门笔记",两小时可以速通。亲测第一部分的面试题应对各个大厂的测开工程师毫无压力👉。

2023-11-08 15:14:51 414

原创 【论文分享】基于特征挖掘的动态恶意域名检测:DDOFM: Dynamic malicious domain detection method based on feature mining

本文提出了一种三级动态域名检测方法(DDOFM),该方法将良性域名统计特征的深度挖掘与DNS的一些关键特征相结合,能够快速有效地预警和检测未知域名。与同类方法相比,DDOFM所需的特征更少,并且不需要在其中标记恶意样本。通过对域名统计信息的深度挖掘,我们提出了域名的三个高维特征:域名形成概率对应的概率密度值(DFPPD)、域名字符出现概率的标准差(SDPOD)、域名前后发散度(JSBFR),用于恶意域名检测。这三个特征可以提高检测精度,也可以直接用于未知域名的属性判定。

2023-11-07 16:28:34 288

原创 【测开求职】面试题:JAVA 吐血整理

本篇文章包含本次测开工程师秋招过程中遇到的所有JAVA面试题,全文两万字,亲测应对各个大厂的面试毫无压力👉

2023-10-18 21:12:23 360

原创 使用【宝塔+docker】在云服务器上部署基于SpringBoot 和 Dubbo RPC 的项目:踩坑记录

待部署的项目包括:前端front,服务提供者backend,服务消费者gateway,注册中心nacos服务器信息:腾讯云入门级服务器2核2G(后续有对服务器进行升级)部署工具:前端使用宝塔部署,消费者和服务者使用打包jar的方式部署,其他后端项目使用docker部署基于rpc框架项目的部署相对于只有一个后端程序的项目部署会要复杂很多,博主在这里踩了很多坑,耗费了很多时间,本篇博客记录下一些大大小小的坑,希望对读者有所帮助~

2023-09-05 18:09:09 1641 3

原创 使用 【jacoco】对基于 SpringBoot 和 Dubbo RPC 的项目生成测试覆盖率报告:实践+原理

基于 Dubbo RPC 的项目中有一个提供者项目backend、一个消费者项目gateway、以及注册中心nacos。本篇文章记录在windows本地对该框架的测试过程,以及介绍jacoco的基本原理。

2023-09-05 17:53:11 1134

原创 【论文分享】图上的不平衡节点分类:GraphENS: Neighbor-aware Ego Network Synthesis for Class-imbalanced Node Classifica

在许多现实世界的节点分类场景中,节点是高度分类不平衡的,其中图神经网络(gnn)很容易偏向于主要的类实例。尽管其他领域中现有的类不平衡方法可以在一定程度上缓解这个问题,但它们没有考虑节点之间消息传递的影响。在本文中,我们假设由于消息传递导致的对少数类的邻居集的过拟合是类不平衡节点分类的主要挑战。为了解决这个问题,我们提出了GraphENS,这是一种新的增强方法,它通过基于相似性组合两个不同的自我网络来合成少数类的整个自我网络。此外,我们引入了一种基于显著性的节点混合方法,以利用其他节点丰富的类通用属性,同时

2023-06-19 10:58:49 939

原创 【论文分享】图上的不平衡结点分类:GraphSR: A Data Augmentation Algorithm for Imbalanced Node Classification

基于这两步选择,模型会为自动地在无标签节点中,挑选出那些最有可能是少数类的节点来补充少数类,使得训练数据集从之前的不平衡状态达到平衡状态。在这两步选择之前,首先会用目前已有的带标签数据集训练一个初始的gnn,使用这个gnn求得图上所有结点的嵌入,当然这个给gnn是有偏差的,因为属实的训练数据集是很不平衡的首先我们来看基于相似性的选择,通过这个模块,数据集从左图变成了右图,我们先看一下发什么什么变化蓝色节点代表多数类,红色节点代表少数类,白色的虚线节点代表的是无标签节点。

2023-05-29 16:16:29 2135 2

原创 【java基础】使用java写算法题的注意事项

本篇博客记录用Java 刷 leetcode的以一些小trips,持续更新中~

2023-04-06 22:09:18 536

原创 【图基础】dgl实现:求对称归一化的邻接矩阵

在训练图神经网络的时候,经常会遇到求某一个graph上的。问题,本篇文章介绍如何用dgl来求解。

2023-04-03 12:24:02 990 1

原创 【图基础】dgl实现:构建同质图,并添加结点特征和标签

目前有很多的博客记录如何构图,但是少有从文件中读取数据进行构图的,本篇博客记录如何用读取外部文件构造一个同质图。

2023-04-03 10:30:15 334

原创 【图基础】dgl/networkx实现:删除图上的孤立节点、删除孤立的簇(团)

导致训练的图上形成了很多孤立的结点,以及孤立的簇(如下图所示)。有些时候,我们还会采取剪枝策略删除一些噪声结点,随着剪枝策略的引入,这种小的簇以及孤立的结点会大规模增加,导致训练速度变慢,甚至影响分类效果,因此需要考虑将图上的这些孤立簇和结点进行删除。最近在科研中遇到了这样一个问题:在构建了一个graph之后,由于实际数据的局限性,本篇博客分享 删除图上的孤立节点、删除孤立的簇(团)的代码实现。

2023-04-02 20:15:07 1046

原创 【第二阶段:java基础】第13章:泛型(P553-P568):自定义泛型、泛型的集成和通配符、Junit

【第二阶段:java基础】第13章:泛型(P553-P568):自定义泛型、泛型的集成和通配符、Junit

2023-02-19 14:53:32 497

原创 【第二阶段:java基础】第13章:集合(P493-P552):Collection(List、Set)、Map(HashMap、HashTable)、Collections

【第二阶段:java基础】第13章:集合(P493-P552):Collection(List、Set)、Map(HashMap、HashTable)、Collections

2023-01-29 14:19:16 195

原创 【科研】2023年CCF-B和CCF-C类会议截稿时间整理

2023年会议整理

2023-01-15 18:57:30 13356 1

原创 【小样本基础】有监督小样本,半监督小样本,无监督小样本

本篇博客探讨的主要是小样本的分类问题

2023-01-09 16:11:37 1336

原创 【第二阶段:java基础】第12章:常用类(P460-P492):Wrapper、String、StringBuffer、StringBuilder、Arrays、System、LocalDate

【第二阶段:java基础】第12章:常用类(P460-P492):Wrapper、String、StringBuffer、StringBuilder、Arrays、System、LocalDate

2023-01-04 14:30:01 263 2

原创 【二维数组】LeetCode48-旋转图像

旋转图像

2022-12-22 11:03:48 168

原创 【数组】LeetCode1109-航班预订统计-查分数组

1109 航班预订统计

2022-12-21 19:20:42 157

原创 【单链表】LeetCode148-排序链表

148 排序链表

2022-12-21 19:12:13 167

原创 【数组】LeetCode304-二维区域和检索-前缀和

二维区域和检索-前缀和

2022-12-16 16:49:17 220

Core数据集+PyG实现Core分类

Core数据集+PyG实现Core分类

2022-03-09

【异常检测入门】使用CNN实现恶意域名检测(TensorFlow)【代码】

【异常检测入门】使用CNN实现恶意域名检测(TensorFlow)【代码】

2022-03-03

机器学习期末复习题.pdf

机器学习期末复习题库

2022-01-06

BiLSTM+Attention实现SemEval-2010 Task 8上的关系抽取(Pytorch)【代码+报告】

实验代码:relation_Extraction.zip

2021-12-27

RNN+Attention实现Seq2Seq中英文机器翻译(pytorch)实现

RNN+Attention实现Seq2Seq中英文机器翻译

2021-12-22

用BiLSTM+CRF实现中文命名实体识别(TensorFlow入门)【代码】

国科大自然语言处理第三次作业

2021-11-29

web安全:口令构成分析(python实现)【代码】

国科大web安全技术大作业,分析国内某网站泄露的600万口令,分析其特点并生成一个字典,由于是团队作业,这里只放上我的部分:分析口令长度以及口令结构特点。

2021-11-15

中英文语料训练CBOW模型获得词向量(pytorch实现)

自然语言处理第二次作业: data文件夹中存储语料(中文语料以及英文语料由老师提供,另一份为中文停用词语料) output文件夹中存储输出的词向量文件 script文件夹中为CBOW的脚本,同时处理中文语料与英文语料 运行步骤:在脚本中确定训练中文或者是英语后,直接运行即可

2021-11-14

自然语言处理第一次作业-DNN RNN CNN 实现猫狗分类

data文件夹中的图片文件没有传上来,因为太大了,可以自行下载补充图片

2021-10-27

2.Deep Learning for Anomaly Detection A Review 论文分享(中).pdf

2.Deep Learning for Anomaly Detection A Review 论文分享(中).pdf

2021-08-24

论文分享-A Review.pdf

这是关于文章 Deep Learning for Anomaly Detection: A Review 为组内同学做分享时做的ppt

2021-07-12

Deep Learning for Anomaly Detection A Review.pdf

Deep Learning for Anomaly Detection A Review.pdf

2021-07-12

java连接mysql查询注册,带窗体程序

在学习java过程中做到了这个实验,感觉很有意思,资源包含上课用到的java数据库连接,java窗体设计的ppt,以及程序中用到的jdbc,源程序和sql文件。

2019-06-22

PowerDesigner数据库设计模板

数据库,PowerDesigner画图的例子(有很多)

2019-04-08

leapmotion package

打开unity之后导入这个包,里面会有leapmotion的所有资源,并且有多个实例场景,连接好传感器之后直接运行场景,就可以看到手

2018-11-23

leap_motion_setup

unity3D和开发游戏时候用到的leapmotion的驱动程序,直接安装在电脑上就好了

2018-11-23

图形学实验MFC,种子填充算法,逐点,有序边,

第一步:点击button选择想要的算法。第二步:点击确认开始绘图。第三步:鼠标单击输入任意多边形的点,双击鼠标左键结束输入绘图完成

2018-11-23

Bresenham,DDA,中点分割算法直线绘制

Bresenham,DDA,中点分割算法直线绘制,并且有效率对比,还有圆弧以及圆的绘制算法

2018-10-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除