【数据结构】-树-计算huffman树的wpl

本文探讨了如何计算Huffman树的Weighted Path Length(WPL),即非叶子节点的权值之和。这种方法仅适用于Huffman树,不适用于一般树形结构。在构建Huffman树的过程中,WPL是一个重要的指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

wpl=非叶子结点的权值之和

使用上面这个方法的前提是,是一棵huffman树才行,对普通的树没有这个说法。


int wpl = 0;

void  WPL(BiTree T) {	
	if (T != NULL)
	{
		if (T->lchild || T->rchild) wpl=wpl+T->data;
		WPL(T->lchild);
		WPL(T->rchild);
	}
}

int main() {
	BiTree T;
	cout << "先序遍历创建二叉树" << endl;
	DLR_DG_createTree(T);
   //7 3 1 -1 -1 2 -1 -1 4 -1 -1
	WPL(T);
	cout << wpl;
}

 

-1代表空节点 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值