【论文分享】动态图恶意域名检测:DyDom: Detecting Malicious Domains with Spatial-Temporal Analysis on Dynamic Graphs

DyDom是一个智能系统,通过分析域名行为和时间变化进行恶意域名检测。它构建离散时间动态图,利用GCN和GRU分析时空关联以识别恶意域。实验证明了其在真实数据上的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 题目:DyDom: Detecting Malicious Domains with Spatial-Temporal Analysis on Dynamic Graphs
  • 链接:https://ieeexplore.ieee.org/document/9780983/?arnumber=9780983
  • 源码:
  • 会议:2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
  • 时间:2021.12
  • 机构:中国科学院大学 信息工程研究所 😜
  • 摘要:域名系统(DNS)被网络犯罪分子广泛滥用,成为其活动的重要基础设施。因此,恶意域名检测是打击和减轻网络犯罪的一项重要任务。现有的研究通常通过黑名单或手工制作的本地域特征来识别恶意域。然而,黑名单和基于专家知识的特征可以通过精心策划的技术被攻击者绕过,这需要新的检测方法。本文提出了一种智能检测恶意域名的新系统DyDom。该系统的核心思想是对域名的行为及其时间变化进行时空分析,以捕获它们之间的深层关联。在DyDom中,我们首先分析域、客户端之间的交互行为并解析ip,然后生成离散时间动态图来模拟域的时间变化。进一步,采用基于图卷积网络(GCN)和门控循环单元(GRU)的分类器通过分析时空关联来检测恶意域。据我们所知,DyDom是第一个用动态图建模DNS场景并利用时空分析发现恶意域的方法。我们开发了一个DyDom的原型,并在从教育网络收集的真实数据中对其进行评估。实验结果表明了该系统的有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值