- 题目:GraphENS: Neighbor-aware Ego Network Synthesis for Class-imbalanced Node Classification
- 链接:https://openreview.net/forum?id=MXEl7i-iru
- 源码:https://github.com/JoonHyung-Park/GraphENS
- 会议:ICLR(深度学习顶会)
- 时间:2022.04.25
- 机构:韩国科学技术高级研究院
- 摘要:在许多现实世界的节点分类场景中,节点是高度分类不平衡的,其中图神经网络(gnn)很容易偏向于主要的类实例。尽管其他领域中现有的类不平衡方法可以在一定程度上缓解这个问题,但它们没有考虑节点之间消息传递的影响。在本文中,我们假设由于消息传递导致的对少数类的邻居集的过拟合是类不平衡节点分类的主要挑战。为了解决这个问题,我们提出了GraphENS,这是一种新的增强方法,它通过基于相似性组合两个不同的自我网络来合成少数类的整个自我网络。此外,我们引入了一种基于显著性的节点混合方法,以利用其他节点丰富的类通用属性,同时阻止类特定特征的注入。我们的方法在多节点分类基准数据集上始终优于基线。
1. Introduction
2. Preliminary
3. Method
4. Experiment