【神经网络-数据分类】利用卷积神经网络(CNN)对数据进行分类

本文探讨了在处理大量高维且复杂关系的数据集时,如何利用卷积神经网络(CNN)进行有效的分类任务。通过介绍CNN的结构,结合Adam优化器和交叉熵损失函数,阐述了模型训练过程。同时,提供了评估模型预测效果的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于数据量大,维度高,且难以找到数据之间内在关系的数据集,可以尝试用卷积神经网络对数据进行分类。

以下为卷积神经网络数据分类的大致结构,采用Adam作为优化器,交叉熵作为损失函数。

import torch
import torch.nn as nn
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader

class CipvCNN(nn.Module):
    def __init__(self):
        super(CipvCNN,self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1,
                out_channels=16,
                kernel_size=3,
                stride=1,
                padding=1,#padding=(kernel_size-1)/2
            ),#输入数据维度1*20*4,此时数据维度为16*20*4
            nn.ReLU(),
        )
        self.conv2=nn.Sequential(
            nn.Conv2d(16,32,3,1,1),
            nn.ReLU(),#此时数据维度为32*20*4
      
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值