P1002 过河卒
题目描述
棋盘上 AA 点有一个过河卒,需要走到目标 BB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,AA 点 (0, 0)(0,0)、BB 点 (n, m)(n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 BB 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
输入输出样例
输入 #1
6 6 3 3
输出 #1
6
说明/提示
对于 100 %100% 的数据,1 \le n, m \le 201≤n,m≤20,0 \le0≤ 马的坐标 \le 20≤20。
Note
- pivotal: 递推、动态规划
- 行列搞反了,举个例子便可知X-M,Z-N
- 20 20 的图,实则是21, 马自身的位置也走不了
- dp结果会很大,long long存储
Code
#include<iostream>
#include<cstdio>
using namespace std;
const int m = 21, n = 21;
int visited[m][n];
long long dp[m][n];
void horse_visiting(int m, int n){
if(m - 2 >= 0 && n - 1 >= 0) visited[m - 2][n - 1] = 1;
if(m - 1 >= 0 && n - 2 >= 0) visited[m - 1][n - 2] = 1;
if(m + 1 >= 0 && n - 2 >= 0) visited[m + 1][n - 2] = 1;
if(m + 2 >= 0 && n - 1 >= 0) visited[m + 2][n - 1] = 1;
if(m - 1 >= 0 && n + 2 >= 0) visited[m - 1][n + 2] = 1;
if(m - 2 >= 0 && n + 1 >= 0) visited[m - 2][n + 1] = 1;
if(m + 1 >= 0 && n + 2 >= 0) visited[m + 1][n + 2] = 1;
if(m + 2 >= 0 && n + 1 >= 0) visited[m + 2][n + 1] = 1;
if(m >= 0 && n >= 0) visited[m][n] = 1;
}
int main(){
int horse_x, horse_y, des_x, des_y;
cin >> des_x >> des_y>> horse_x >> horse_y ;
horse_visiting(horse_x, horse_y);
dp[0][0] = 1;
for(int i = 0; i <= des_x; i++) // line
{
for(int j = 0; j <= des_y; j++) // row
{
if(visited[i][j] == 1 || (i == 0 && j == 0))
continue;
if(i == 0) dp[i][j] = dp[i][j-1];
else if(j == 0) dp[i][j] = dp[i-1][j];
else dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
cout << dp[des_x][des_y];
return 0;
}