素数的计数

1 素数定理

  我们已经知道有无穷多个素数,也知道有无穷多个合数。那到底哪个数多呢?我们可以通过计数函数来比较它们。

  素数的计数函数被称为 π ( x ) \pi(x) π(x),这里的 π \pi π是“prime”的缩写。它计数不超过 x x x的素数的数量,即:
π ( x ) = # { 素 数 p : p ≤ x } \pi(x) = \#\{素数p:p\le x\} π(x)=#{p:px}
例如, π ( 10 ) = 4 \pi(10) = 4 π(10)=4,下表给出了 π ( x ) \pi(x) π(x) π ( x ) / x \pi(x)/x π(x)/x的值

x x x10255010020050010005000
π ( x ) π(x) π(x)4915254695168669
π ( x ) / x π(x)/x π(x)/x0.4000.3600.3000.2500.2300.1900.1680.134

看起来, x x x越大, π ( x ) / x \pi(x)/x π(x)/x越小。假设这种模式继续持续下去,我们就有理由说“大多数整数不是素数”。这就进一步提出 π ( x ) / x \pi(x)/x π(x)/x以怎样的速度减小的问题。下述定理给出了答案,它是19世纪数论取得的最高成就之一。

  定理(素数定理):当 x x x很大时,小于 x x x的素数个数近似等于 x / ln ⁡ ( x ) x/\ln(x) x/ln(x),换句话说:
lim ⁡ x → + ∞ π ( x ) x / ln ⁡ ( x ) = 1 \lim\limits_{x\to+\infty} \frac{\pi(x)}{x/\ln(x)} = 1 x+limx/ln(x)π(x)=1

  下表比较了一下这个值:

x x x 10 10 10 100 100 100 1000 1000 1000 1 0 4 10^4 104 1 0 6 10^6 106 1 0 9 10^9 109
π ( x ) π(x) π(x)42516812297849850847534
x / ln ⁡ ( x ) x/\ln(x) x/ln(x)4.3421.71144.761085.7472382.4148254942.43
π ( x ) / ( x ln ⁡ ( x ) ) π(x)/(x\ln(x)) π(x)/(xln(x))0.9211.1511.1611.1321.0841.054

  大约在1800年,通过检查类似的表,高斯与勒让德独立地提出素数定理成立的猜想。1896年,阿达马和Ch. de la vallee Poussin各自证明了素数定理。证明需要用到复分析方法。令人惊讶的是,有关整数的定理的证明不得不使用微积分作为工具,解析数论这一数学分支专用微积分方法证明数论定理。

2 哥德巴赫猜想

  每个偶数 n ≥ 4 n\ge 4 n4可表成两个素数之和。

  哥德巴赫在1742年6月7日给欧拉的一封信中提出这个猜想。不难验证哥德巴赫猜想对前几个偶数成立。现在使用计算机,人们已经对 2 ∗ 1 0 10 2*10^{10} 21010以下的偶数验证了哥德巴赫猜想。数学家甚至能够证明与哥德巴赫猜想相似的结论。1937年,维诺格拉朵夫证明了每个(充分大的)奇数 n n n可表成三个素数之和。1966年陈景润证明了每个(充分大的)偶数可表成 p + a p+a p+a的形式,其中 p p p是素数, a a a是素数或两个素数的乘积。

3 孪生素数猜想

  存在无穷多个素数 p p p使得 p + 2 p+2 p+2也是素数。

  素数很不规则,相邻两个素数之间常常会有很大间隙。似乎有相当多的场合使素数 p p p紧随另一个素数 p + 2 p+2 p+2。这些数对被称为孪生素数,例如:
( 3 , 5 ) , ( 5 , 7 ) , ( 11 , 13 ) , ( 17 , 19 ) ⋯ (3,5),(5,7),(11,13),(17,19)\cdots (3,5),(5,7),(11,13),(17,19)
  人们用计算机查找大的孪生素数,其中包括像:
( 242206083 ∗ 2 38880 − 1 , 242206083 ∗ 2 38880 + 1 ) (242206083*2^{38880} - 1,242206083*2^{38880} + 1) (2422060832388801,242206083238880+1)
组成的巨大孪生素数对。1966年,陈景润证明存在无穷多个素数 p p p使得 p + 2 p+2 p+2是素数或两个素数的乘积

4 N 2 + 1 N^2 +1 N2+1猜想

  存在无穷多个形如 N 2 + 1 N^2 +1 N2+1的素数。

  如果 N N N是奇数,则 N 2 + 1 N^2 + 1 N2+1是偶数,所以它不可能是素数,除非 N = 1 N=1 N=1,然而,如果 N N N是偶数,则 N 2 + 1 N^2 + 1 N2+1似乎经常是素数。 N 2 + 1 N^2 + 1 N2+1猜想说明这种情况无穷次发生。前几个这种形式的素数是:
2 2 + 1 = 5 , 4 2 + 1 = 17 , 6 2 + 1 = 37 , ⋯ 2^2 + 1 = 5,4^2+1 = 17,6^2 + 1=37,\cdots 22+1=5,42+1=17,62+1=37,

  目前已知的最好结果由Hendrik Iwaniec于1978年证明。他证明存在无穷多个 N N N使得 N 2 + 1 N^2 + 1 N2+1是素数或两个素数的乘积

  尽管没有人知道是否存在无穷多个孪生素数或无穷多个形如 N 2 + 1 N^2+1 N2+1的素数,但是数学家们猜测它们的计数函数很像。设:
T ( x ) = # { 使 得 p + 2 也 是 素 数 的 素 数 p ≤ x } S ( x ) = # { 使 得 p 的 形 式 为 N 2 + 1 的 素 数 p ≤ x } T(x) =\#\{使得p+2也是素数的素数p\le x\} \\ S(x) =\#\{使得p的形式为N^2+1的素数p\le x\} T(x)=#{使p+2px}S(x)=#{使pN2+1px}
人们猜测:
lim ⁡ x → + ∞ T ( x ) x / ( ln ⁡ ( x ) ) 2 = C lim ⁡ x → + ∞ S ( x ) x / ln ⁡ ( x ) = C ′ \lim\limits_{x\to+\infty} \frac{T(x)}{x/(\ln(x))^2} = C\\ \lim\limits_{x\to+\infty} \frac{S(x)}{\sqrt x/\ln(x)} = C' x+limx/(ln(x))2T(x)=Cx+limx /ln(x)S(x)=C

5 参考资料

《数论概论》第四版 P60-P62

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值