题目大意:
N个点,M条边,问有多少个点对对除彼此之间的点外对其他点的连接情况完全相同。(N,M<=1,000,000)
显然能想到hash。如果我们给每个点一个hash值,再将每个和这个点相连的点加上这个hash值。
不难发现,如果不考虑彼此的连接情况,我们可以进行hash。hash后会被分成若干个连接情况完全相同的块,那么这些块对答案的贡献就是size*(size-1)/2。
如果彼此之间有边相连,那么我将连接情况减去彼此的hash值,再判断是否相同。若相同,则对答案的贡献是1。
由于神奇的原因,似乎不容易被卡掉。我在这里用了自然溢出,出现重复的几率相当小(并不是没有)
#include<bits/stdc++.h>
#define N 1000100
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
const ULL H=103;
inline void read(int &a){
a=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch<='9'&&ch>='0') a=a*10+ch-'0',ch=getchar();
}
ULL bas=1;
int n,m;
int a[N],b[N];
ULL has[N],cf[N];
vector<int> v[N];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
read(a[i]);read(b[i]);
v[a[i]].push_back(b[i]);
v[b[i]].push_back(a[i]);
}
for(int i=1;i<=n;i++){
if(!v[i].size()) i++;
int len=v[i].size();
for(int j=0;j<len;j++) has[v[i][j]]+=bas;
cf[i]=bas;
bas*=H;
}
long long ans=0;
for(int i=1;i<=m;i++){
if(has[a[i]]-cf[b[i]]==has[b[i]]-cf[a[i]]) ans++;
}
sort(has+1,has+n+1);
ULL la=-1;
int tot=0;
for(int i=1;i<=n;i++){
if(la!=has[i]){
la=has[i];
ans+=LL(tot)*LL(tot-1)/2;
tot=0;
}
tot++;
}
ans+=LL(tot)*LL(tot-1)/2;
printf("%I64d\n",ans);
return 0;
}