codeforces 154 C - Double Profiles

题目大意:

N个点,M条边,问有多少个点对对除彼此之间的点外对其他点的连接情况完全相同。(N,M<=1,000,000)

显然能想到hash。如果我们给每个点一个hash值,再将每个和这个点相连的点加上这个hash值。

不难发现,如果不考虑彼此的连接情况,我们可以进行hash。hash后会被分成若干个连接情况完全相同的块,那么这些块对答案的贡献就是size*(size-1)/2。

如果彼此之间有边相连,那么我将连接情况减去彼此的hash值,再判断是否相同。若相同,则对答案的贡献是1。

由于神奇的原因,似乎不容易被卡掉。我在这里用了自然溢出,出现重复的几率相当小(并不是没有)

#include<bits/stdc++.h>
#define N 1000100
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
const ULL H=103;
inline void read(int &a){
	a=0;char ch=getchar();
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch<='9'&&ch>='0') a=a*10+ch-'0',ch=getchar();
}
ULL bas=1;
int n,m;
int a[N],b[N];
ULL has[N],cf[N];
vector<int> v[N];
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		read(a[i]);read(b[i]);
		v[a[i]].push_back(b[i]);
		v[b[i]].push_back(a[i]);
	}
	for(int i=1;i<=n;i++){
		if(!v[i].size()) i++;
		int len=v[i].size();
		for(int j=0;j<len;j++) has[v[i][j]]+=bas;
		cf[i]=bas;
		bas*=H;
	}
	long long ans=0;
	for(int i=1;i<=m;i++){
		if(has[a[i]]-cf[b[i]]==has[b[i]]-cf[a[i]]) ans++;
	}
	sort(has+1,has+n+1);
	ULL la=-1;
	int tot=0;
	for(int i=1;i<=n;i++){
		if(la!=has[i]){
			la=has[i];
			ans+=LL(tot)*LL(tot-1)/2;
			tot=0;
		}
		tot++;
	}
	ans+=LL(tot)*LL(tot-1)/2;
	printf("%I64d\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值