自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Nakaizura

每天都想进悠闲会的中居音饭。Mary!!

原创 Source-Code-Notebook(源码解析和逐行笔记)

Source-Code-Notebook 关于一些经典论文源码Source Code的中文笔记,尽量做到整体框架梳理和逐行源码注释。 不过太早期的代码一般都模块化了,所以主要更一些后期(2017-NOW)的笔记。 语言主要是pytorch和Tensorflow版本的代码,部分keras。 ...

2020-05-03 21:36:50 769 0

原创 图神经网络用于推荐系统问题(NGCF,LightGCN)
原力计划

何向南老师组的又两大必读论文,分别发在SIGIR19’和SIGIR20’。 Neural Graph Collaborative Filtering 协同过滤(collaborative filtering)的基本假设是相似的用户会对物品展现出相似的偏好,自从全面进入深度学习领域之后,一般主要是先...

2020-06-26 17:22:55 402 0

原创 Strategies for Pre-training Graph Neural Networks(图预训练)
原力计划

STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS ICLR2020,Stanford出品。用于GNN的预训练策略。 paper:https://openreview.net/forum?id=HJlWWJSFDH&noteId=HJlWWJ...

2020-05-31 18:12:43 1030 0

原创 胶囊网络用于推荐系统问题(MIND,CARP)
原力计划

Multi-Interest Network with Dynamic Routing for Recommendation at Tmall 多兴趣动态路由,出自一直在学术前沿的阿里:https://arxiv.org/pdf/1904.08030.pdf 。 推荐系统中默认用户的历史行为代表着...

2020-05-29 22:37:21 641 0

原创 知识图谱用于推荐系统问题(CKE,RippleNet)
原力计划

Knowledge Graph 知识图谱是一种语义图,其结点(node)代表实体(entity)或者概念(concept),边(edge)代表实体/概念之间的各种语义关系(relation)。一个知识图谱由若干个三元组(h、r、t)组成,其中h和t代表一条关系的头结点和尾节点,r代表关系。 引入知...

2020-05-29 18:16:39 775 3

原创 知识图谱用于推荐系统问题(MKR,KTUP,KGAT)
原力计划

前一篇文章介绍了知识图谱用于推荐系统问题(CKE,RippleNet),这一篇博文目整理对KG和RC融合的更加深入的两篇文章MKR,KTUP。MKR利用一个Cross单元使两者融合,KTUP则是相互补全相互增强的思路。 Multi-task Learning for KG enhanced R...

2020-05-29 18:08:30 725 0

原创 图神经网络用于推荐系统问题(PinSage,EGES,SR-GNN)
原力计划

Session-based Recommendation with Graph Neural Networks 会话序列推荐的图应用,发自AAAI 2019,先放链接: blog:https://sxkdz.github.io/research/SR-GNN/ paper:https://arxi...

2020-05-29 14:44:54 696 0

原创 注意力机制用于推荐系统问题(DIN,DIEN,BERT4Rec)

当注意力机制都已经变成很tasteless的手法的时候,使用/魔改注意力机制一定要专注讲好自己的故事…即为什么要用Attention,为什么要魔改Attention。 DIN和DIEN都是阿里针对CTR预估的模型,都主要是对用户历史行为数据的进一步挖掘的工作。CTR预估任务是,根据给定广告/物品、...

2020-05-28 21:14:02 294 0

原创 Cross-modal Retrieval(跨模态检索)
原力计划

前一篇文章整理了多模态融合Multimodal Fusion,最近看到一篇很好的跨模态检索的文章,这篇博客就来整理几篇博主认为idea还不错的跨模态检索。另,如果有其他idea很好的跨模态论文,希望你在文章后面留言! Cross-modal Retrieval 一般一个跨模态检索过程可以既包括模态...

2020-05-03 20:55:32 1682 0

原创 Scene Graph(视觉关系场景图检测)
原力计划

Scene Graph Neural Motifs: Scene Graph Parsing with Global Context 开山经典之作。 motif指场景图中重复出现的子结构。引入relation priors(主语和宾语确定,relation很容易确定,并且类似的motif会大量出...

2020-05-02 20:58:16 697 0

原创 Transformer变体(Star-Transformer,Transformer-XL)

Star-Transformer 来自NAACL 2019的论文。 问题: Transformer的自注意力机制每次都要计算所有词之间的注意力,其计算复杂度为输入长度的平方,结构很重 在语言序列中相邻的词往往本身就会有较强的相关性,似乎本来就不需要计算所有词之间 解决: Star-Transf...

2020-05-02 19:15:33 326 0

原创 Multi-task Learning in LM(多任务学习,MT-DNN,ERNIE2.0)
原力计划

MTDNN 多任务学习 ENRIE1.0,3种mask策略(BPE)预测短语和实体。 ERNIE2.0 连续增量学习。主要贡献是两个: 序列多任务学习的预训练任务机制(sequential multi-task learning),使模型能够学习到词汇,语法,语义信息。不同于持续学习和多任务学习...

2020-03-29 21:25:05 1242 0

原创 Cross-modal Pretraining in BERT(跨模态预训练)
原力计划

BERT以及BERT后时代在NLP各项任务上都是强势刷榜,多模态领域也不遑多让…仅在2019 年就有8+篇的跨模态预训练的论文挂到了arxiv上…上图是多篇跨模态论文中比较稍迟的VL-BERT论文中的比较图,就按这个表格的分类(Architecture)整理这几篇论文吧。 所有的论文都是基于BER...

2020-03-29 13:50:42 1204 0

原创 Multimodal Fusion(多模态融合)
原力计划

Jeff Dean:我认为,2020年在多任务学习和多模态学习方面会有很大进展,解决更多的问题。我觉得那会很有趣。 多模态融合 (Multimodal Fusion) 一般来说,每一种信息的来源或者形式,都可以称为一种模态(Modality),目前研究领域中主要是对图像,文本,语音三种模态的处理。...

2020-03-28 19:44:15 4273 2

原创 Dynamic Routing Between Capsules(胶囊网络与源码解析)

胶囊网络叫做向量神经元 (vector neuron) 甚至张量神经元 (tensor neuron) 更贴切。 不变性指不随一些变换来识别一个物体,具体变换包括平移 (translation),旋转 (rotation),视角 (viewpoint),放缩 (scale) 等。不变性通常在物体识...

2020-03-19 22:43:07 645 0

原创 Video Understanding(视频理解,I3D,SlowFast,Non-local)

CV领域图像已经登天很难短时间玩不出大花样大结构了(希望能早日打脸),大家开始打往视频上面靠的主意。由于早期限制于数据集和计算设备,多是从图像的2D模型直接转换成3D版本,如SIFT 3D,3D HOG,或者Dense Trajectory这种统治了很久的模型等,等到深度学习开始步入新的周期,数据...

2020-03-18 21:25:12 852 0

原创 Heterogeneous Graph Neural Network(异质图神经网络)

Heterogeneous Information Network 传统的同构图(Homogeneous Graph)中只存在一种类型的节点和边,当图中的节点和边存在多种类型和各种复杂的关系时,再采用Homo的处理方式就不太可行了。这个时候不同类型的节点具有不同的特征,其特征可能落在不同的特征空间...

2020-02-16 21:16:14 1373 5

原创 Graph Neural Network(GraphSAGE,GAT)

Graph 图论问题。如生成树算法,最短路径算法,BFS,DFS。 概率图模型。将条件概率表达为图结构,如马尔可夫链,条件随机场。 图神经网络。结合深度学习,如博主已经整理过的Graph Embedding,Graph LSTM/CNN等结合。基本上Graph+Neural Network,即使...

2020-01-09 15:48:44 856 0

原创 Graph Embedding(SDNE,Graph2vec)

SDNE 前一篇整理了3种常用的图嵌入方法,DeepWalk,LINE和Node2vec。Structural Deep Network Embeddings(结构深层网络嵌入,SDNE)的不同之处在于,它并不是基于随机游走的思想,在实践中比较稳定。 主要思路如上图,会将节点向量 si 作为模...

2020-01-08 20:46:09 1454 0

原创 Memorandum

基础学习路线,大佬请绕道走不耽误时间了 本博客受欧阳老师以留实验室遗产为由更新至今,主要以机器学习、深度学习知识为为主,给与入门和后续学习路线。 受用胡适先生一句:怕什么真理无穷,进一寸有一寸的欢喜。 AI大世界纷杂万分,只愿保发前行。 下面是本实验室在实践中适用的基础必学路线与建议,只适...

2020-01-08 19:19:43 756 0

原创 Graph Embedding(DeepWalk,LINE,Node2vec)

Graph Embedding 属于表示学习。主要是将图中的节点/图表示成低维,实值,稠密的向量形式,使得到的向量能够做进一步的推理,对下游任务会很有帮助。图嵌入(顶点嵌入/图嵌入)方法主要有矩阵分解,随机游走和深度学习。 矩阵分解: 基于矩阵分解的方法是将节点间的关系用矩阵的形式加以表达...

2020-01-08 18:08:53 1207 0

原创 Knowledge Distillation(知识蒸馏)

Do Deep Nets Really Need to be Deep? 虽然近年来的趋势如BigGAN,BERT等,动辄上亿参数,几乎就是数据驱动+算力的“暴力”结果。但同时,更加轻量级的升级版模型如ALBERT也能以更少的参数和架构持续刷榜,元学习(meta learning)和零样本学习(Z...

2020-01-06 15:43:50 763 0

原创 Memory Networks and Gates(记忆网络和门控单元)

Memory Networks 正如该方法名:memory,关于神经网络的以及功能LSTM,GRU等方法能够实现一部分记忆功能了,但大量的实验和研究者们都证明了LSTM在更长时间内处理视频的时间结构方面不够有效,并不能达到记录更多更长的记忆效果。所以对比起来,记忆网络更像是想要尝试通过一些记忆组...

2019-12-10 17:59:01 587 0

原创 多代理强化学习MARL(MADDPG,Minimax-Q,Nash Q-Learning)

由于强化学习领域目前还有很多的问题,如数据利用率,收敛,调参玄学等,对于单个Agent的训练就已经很难了。但是在实际生活中单一代理所能做的事情还是太少了,而且按照群体的智慧,不考虑训练硬件和时长问题,使用多个agent同时进行学习,会不会有奇招呢?另外如果在需要multi-agent的场景下,如想...

2019-10-27 17:31:57 1954 3

原创 Graph Convolutional Network (图卷积GCN)

目标:为了解决非规则数据结构 — 学习图上特征映射 直觉上想要找到构图结点的特征,一定是与其相关的结点、连接的边有关。那么就直接把每个顶点比如1号结点相邻的结点找出来,虽然相邻的个数可能不一样,设个最大值,然后类似onehot一下,变成统一维度来做不就ok了?但是这样做的缺点在于,必须每个顶点都...

2019-10-25 17:17:33 836 0

原创 Pretraning in NLP(预训练ELMo,GPT,BERT,XLNet)

图像中的Pretraning往往是在大规模图像集上进行训练后,再在特定的任务上进行fine-turning。而nlp领域的fine-turning就是word embedding了。而词嵌入(例如word2vec,GloVe)通常是在一个较大的语料库上利用词的共现统计预训练得到的。例如king和q...

2019-10-05 14:36:02 1417 0

原创 Attention 2 Transformer (注意力机制与各种注意力)

Attention出自NMT(神经网络机器翻译)以处理文本对齐问题,目前已经在各个领域发光发彩,玩出各种花样带出多少文章。 end-to-end的LSTM版本的NMT模型,两个Deep LSTM分别做encoder 和 decoder。( NMT大部分以Encoder-Decoder结构为基础结...

2019-10-05 14:35:02 864 0

原创 Representation Learning(词嵌入NNLM,word2vec,GloVe)

NLP(Natural Language Processing) NLP主要是关注计算机和人类(自然)语言之间的相互作用的领域。如果要想实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等。前者称为自然语言理解,后者称为自然语言生成,这也是...

2019-10-05 14:32:42 780 0

原创 Generative Adversarial Networks(WGAN、SAGAN、BigGAN)

此篇博文继续整理GAN的衍生版本。 Wasserstein Generative Adversarial Networks(WGAN) GAN 在基于梯度下降训练时存在梯度消失的问题,特别是当真实样本和生成样本之间差距并不大,而且甚至近乎没有差距时, 其目标函数的 Jensen-Shannon...

2019-07-24 19:01:20 1224 0

原创 Automated Machine Learning (AutoML)

数据是这个时代的核心,基于数据所构建的模型和决策为工业自动化贡献了很多,也已经改变了很多企业的商业模式、产品等,改变了世界也收益颇丰。这也是时下大数据、人工智能炒作得如此火爆,甚至一些机器人智能威胁论也层出不穷。但实际上机器学习、深度学习和深度强化学习的能力实在很有限的,近日来在NLP任务中大杀四...

2019-07-22 16:59:19 885 0

原创 Generative Adversarial Networks(CGAN、CycleGAN、CoGAN)

很久前整理了GAN和DCGAN,主要是GAN的基本原理和训练方法,以及DCGAN在图像上的应用。其核心思想就是通过训练两个神经网络,一个用来生成数据,另一个用于在假数据中分类出真数据,并且同时训练它们使其收敛到某一点,那么在这个点上,训练好的生成器就可以生成“新的且真实”的数据。 Conditi...

2019-07-17 17:28:46 1134 0

原创 强化学习用于推荐系统问题(《强化学习在阿里...)

读书笔记–《强化学习在阿里的技术演进与业务创新》 强化学习和其他学习⽅法不同之处在于强化学习是智能系统从环境到⾏为映射的学习,以使奖励信号函数值最⼤。如果智能体(agent)的某个⾏为策略(action)导致环境正的奖赏(reward),那么智能体以后产⽣这个⾏为策略的趋势便会加强。强化学习是最...

2019-07-03 09:53:02 3726 0

原创 强化学习用于金融时序问题(Q,DQN,AC)

前一篇博文所整理的模型中,主要有ARMA、RL、SVM、LSTM方法,本篇主要以强化学习方法来解决相关问题。强化学习是关于Agent与环境之间进行的互动,通过不断与环境状况的交互来进行“学习”,在诸多的场景都取得了成功如alphaGo等,同样的,在金融市场中也通过交互来捕捉股票市场特征,用于指导交...

2019-07-01 17:01:12 1905 8

原创 传统量化金融时序模型(ARMA,ml-XGBoost,dl-LSTM)

时间序列是指一系列时刻 t1, t2, …, tn 按照时间次序排列,然后尝试预测其tn+1时刻的状态。 AR是线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据,其本质类似于插值。 GARCH,广义ARCH模型,是专门针对金融数据所做的模型,它对误差的方差做了进一步的分析,特别适合...

2019-07-01 16:52:59 1600 0

原创 强化学习(Dyna-Q,Dyna2)

基于模型的强化学习(Model Based RL) Value Based --Policy Based --Model Based Value Based学习价值来指导策略,Policy Based直接学习策略以收获最大价值,还有将两者融合的AC。但是在学习价值或策略都十分困难的时候(如某千...

2019-03-28 20:48:57 4968 6

原创 强化学习(DDPG,AC3,DPPO)

通过把Policy Based 和Value Based结合起来的Actor Critic,解决了Value Based如Q-Learning的无法解决连续和高维度问题,也解决了Policy Based的效率低速度慢的问题。但是同样的,想DQN一样,在使用神经网络进行值估计的时候,神经网络的相关性...

2019-03-27 12:16:28 4247 0

原创 强化学习(Policy Gradient,Actor Critic)

强化学习是通过奖惩的反馈来不断学习的,在Q-Learning,Sarsa和DQN中,都是学习到了价值函数或对价值函数的近似,然后根据价值来选择策略(如选择最大价值的动作),所以这一类也被称为Value Based Model。但是这种处理方式有几处瓶颈: 处理连续动作效果差。对于高维度或连续...

2019-03-26 17:32:50 2259 0

原创 强化学习(Double/Prioritised Replay/Dueling DQN)

Q_Learning和Sarsa中都是利用了Q表来记录Q值,小规模场景状态往往比较少,便可以方便的用表存储再查询更新,但很多现实问题状态和动作都很复杂,而且如果出现连续值的状态则需要等距离分割离散,存储量往往太大,比如像下围棋如果还用Q表来存状态是不可能的事情。那么如果不用Q表存取,怎么得到价值函...

2019-03-25 20:52:24 1733 0

原创 强化学习(Q-Learning,Sarsa)

Reinforcement Learning 监督学习–>非监督学习–>强化学习。 监督学习:拥有“标签”可监督算法不断调整模型,得到输入与输出的映射函数。 非监督学习:无“标签”,通过分析数据本身进行建模,发掘底层信息和隐藏结构。 但是1.标签需要花大量的代价进行收集,在有些...

2019-03-25 18:34:16 5054 0

原创 Generative Adversarial Networks(生成对抗网络GAN,DCGAN)

Generative Adversarial Networks GAN的想法很简单,一言以蔽之:以假乱真。 Generative(生成):GAN实际上可以看作是一个生成数据的工具。目标就是通过学习让自身生成更加真实的数据。 Adversarial (对抗):既然能够以假乱真,对抗的自然就是识...

2019-03-13 15:26:57 4460 0

提示
确定要删除当前文章?
取消 删除