对比学习的应用(LCGNN,VideoMoCo,GraphCL,XMC-GAN)

之前已经有博文整理过了对比学习的概念,比较重要且流行的文章,和一些已经有的应用(主要是基于InfoNCE等早期的手段):

本篇博文将继续整理一些对比学习的应用,主要是集中在MoCo和SimCLR等模型。

在这里插入图片描述
Label Contrastive Coding based Graph Neural Network for Graph Classification
MoCo架构。基于标签对比编码的图分类图神经网络。一般做图分类的方法也是先学图的表示,主要有两种1先算node Embedding再聚合2直接graph Embedding,然后再做图分类。但是作者认为这些方法忽略了实例级的细粒度,而实例之间的判别式信息粒度更细有利于图分类任务。

属于哦以为了更有效、更全面地利用标签信息,提出基于标签对比编码的图神经网络(LCGNN),

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值