之前已经有博文整理过了对比学习的概念,比较重要且流行的文章,和一些已经有的应用(主要是基于InfoNCE等早期的手段):
本篇博文将继续整理一些对比学习的应用,主要是集中在MoCo和SimCLR等模型。
Label Contrastive Coding based Graph Neural Network for Graph Classification
MoCo架构。基于标签对比编码的图分类图神经网络。一般做图分类的方法也是先学图的表示,主要有两种1先算node Embedding再聚合2直接graph Embedding,然后再做图分类。但是作者认为这些方法忽略了实例级的细粒度,而实例之间的判别式信息粒度更细有利于图分类任务。
属于哦以为了更有效、更全面地利用标签信息,提出基于标签对比编码的图神经网络(LCGNN),