- 博客(4)
- 收藏
- 关注
原创 关于padding操作的简单解释
关于padding操作的简单解释在一般的卷积神经网络里会使用padding操作,用于填充图像周围区域,使得输出的特征图达到想要的尺寸:一般认为输入特征图为m x m 大小,卷积核为n x n大小,则在输出时的图像大小为 (m-n+1) x (m-n+1)此处是没有进行填充的。关于此类不做边缘填充的卷积网络会有很明显的问题:特征图在不断缩小,边缘信息传递弱化。特征图在不断缩小:显而易见 m-n+1 <= m , n&g
2021-10-09 21:13:25 1227
原创 卡尔曼滤波matlab示例
卡尔曼滤波matlab示例% 卡尔曼滤波实验clc;clear all;close all;%==过程移噪声和观测噪声的估计是否加噪=======noise_flag=0;%如果加噪赋值1,否则赋值0Q_N=100;% 对过程噪声方差Q估计的噪声方差R_N=100;Q_N_Mean=0;R_N_Mean=0;%============================================N=20;% 过程噪声方差QQ = 0.5;% 观测噪声方差RR = 100;
2020-12-03 10:27:05 1997
原创 关于NTU-RGB+D数据集skeleton数据
关于NTU-RGB+D数据集skeleton数据的分析本人最近在做相关的研究,分享一下关于此数据集的经验。这个数据集是来源于南洋理工大学的ROSE实验室,16年出了60种动作,后来又新增了60种,成为NTU RGB+D 120。随数据集发表的还有他们的文章——NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis 文章是在CVPR上发表的,算是权威的数据集了。数据集提供了60种动作,3种拍摄角度,多种互动场景和多种演员设置(年龄、性
2020-11-09 23:08:09 5859 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人