自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 深度学习数据处理:datasets与torch.utils.data实战指南

本文系统介绍了Hugging Face的datasets库和PyTorch的torch.utils.data模块的核心功能与使用方法。datasets库提供了高效的数据加载、预处理和管理工具,支持流式处理和缓存;torch.utils.data则专注于构建可迭代的数据管道,通过Dataset和DataLoader实现批量处理和并行加载。文章详细列举了两者的核心类、常用方法及参数配置,并展示了如何将两者结合构建典型的工作流。最后通过对比表总结了两者的适用场景,推荐使用datasets进行数据预处理,再通过Da

2026-01-22 15:58:57 695

原创 # [特殊字符] Hugging Face Transformers 模型加载与任务头使用完整指南

Hugging Face的AutoModel提供统一接口加载不同架构的预训练模型,支持文本分类、序列标注、问答等多种任务。具体模型适用于特定架构,而AutoModel根据配置自动选择对应模型,具有更好的通用性。使用时需注意模型与任务头的兼容性,如BERT支持分类和NER,GPT适用于生成任务。推荐优先使用AutoModel,通过tokenizer处理输入后直接调用模型。根据任务类型(分类、生成等)和资源需求选择合适的基础模型,如BERT用于分类、T5用于生成任务。

2026-01-21 22:10:32 731

原创 PyCharm远程服务器配置全指南

📝 PyCharm远程服务器配置指南(Windows专业版) 本手册提供PyCharm专业版连接Linux服务器的完整流程: 1️⃣ 连接配置 通过SFTP/SSH建立连接 填写服务器地址、端口和认证信息 测试连接确保可用 2️⃣ 路径映射 设置本地项目目录与远程路径对应关系 注意部署路径必须填写完整服务器路径 3️⃣ 代码同步 推荐开启自动上传功能 配置排除规则(.pyc/__pycache__等) 支持手动上传和拖拽操作 4️⃣ 运行部署 训练模型:服务器终端执行脚本 Web项目:配置Web路径和访问

2026-01-20 19:25:24 501

原创 # [特殊字符] Conda 使用教程详解(完整指南)

Conda 是一个跨平台的包和环境管理工具,支持Python及其他语言的依赖管理。它能够创建隔离的虚拟环境,管理不同版本的软件包,避免项目间的依赖冲突。本文介绍了Conda的核心功能:安装方法(Anaconda/Miniconda)、基本命令(环境创建、包管理)、与pip的配合使用、镜像加速配置以及环境导出导入等实用技巧。最佳实践建议为每个项目创建独立环境,优先使用conda安装包,必要时配合pip,并通过environment.yml文件实现环境复现。

2026-01-20 15:38:19 632

原创 深度学习中的RNN隐藏层与变长序列训练技巧

本文解析了RNN隐藏层结构与变长序列训练的关键问题。首先区分了时间步与隐藏层的概念,详细说明单层和多层RNN的数据流与输出形状差异。针对变长序列训练,推荐采用PyTorch的Padding+Packing标准方法,通过补零、排序、压缩序列等技术实现高效处理,同时避免pad token干扰。文中还澄清了常见误区,并对比了单层与多层RNN的特性差异。该方案能有效支持GPU并行计算,确保变长batch训练的正确性和效率。

2026-01-16 16:23:49 552

原创 大模型微调技术全景:从思想到实践

《大模型微调技术全景指南》摘要 本文系统阐述了大模型微调的技术体系,分为三个层级:顶层设计提出"提示导向微调"思想,强调通过输入提示而非参数更新来引导模型;中层策略详细介绍了6种提示设计与工程方法,包括硬/软提示、PET、思维链等;底层技术则聚焦参数高效微调(PEFT),深入解析LoRA、Prompt-Tuning等5种核心技术的原理与实现。全文构建了从思想到实践的完整技术框架,通过伪代码示例和关系图谱,帮助开发者理解各类技术的定位、优势及协同应用场景,适用于学习选型和架构设计。

2026-01-14 15:01:08 627

原创 PyCharm远程开发:精准使用Conda环境

摘要: 本文解决PyCharm远程连接Linux服务器时自动创建venv环境的问题,指导如何正确使用已有的Conda虚拟环境。关键步骤包括:确认Conda环境存在,获取Python路径,在PyCharm中手动添加远程解释器(选择"Use existing interpreter"并输入Conda环境的Python路径)。常见错误如找不到解释器或conda命令未识别,可通过修改环境变量或手动指定路径解决。最佳实践是避免依赖PyCharm自动创建环境,始终手动选择现有Conda解释器路径。

2025-12-25 10:44:37 1001

原创 Conda与Pip使用指南:核心原则与避坑技巧

摘要:本文档系统梳理了conda和pip的使用边界与最佳实践。核心原则是优先使用conda安装科学计算核心库和系统级依赖,用pip安装纯Python项目包。强调base环境应仅作为管理平台,避免安装项目依赖包。提供了详细的判断流程和风险提示,推荐创建独立项目环境并规范使用mamba工具。最后给出常用命令速查表和"三句话原则":conda管核心系统环境,pip管项目PyPI包;base只装工具不装数据包;先查conda再用pip,注意版本对齐。

2025-12-25 10:44:00 1022

原创 深度学习模型剪枝:高效压缩实战指南

模型剪枝是一种通过移除神经网络中冗余参数来减小模型规模、提升推理效率的技术。它分为结构化剪枝(移除整个通道/层)和非结构化剪枝(随机去除权重),常用方法包括阈值剪枝、梯度驱动剪枝等。剪枝能显著降低参数量(50-90%)和计算开销,但可能带来精度损失,需配合微调恢复性能。实现时需权衡剪枝粒度与硬件支持,PyTorch等框架提供了相关工具。该技术特别适合边缘设备部署,在保持模型性能的同时优化资源占用。

2025-12-24 13:02:28 999

原创 模型蒸馏深入理解

模型蒸馏(Knowledge Distillation, KD)是一种将一个复杂的教师模型(Teacher Model)所学到的知识,迁移到一个更小、更高效的学生模型(Student Model)的技术。知识迁移目标:用小模型逼近大模型性能,实现轻量化 + 高精度项目内容核心思想教师模型的知识迁移到学生模型关键技术温度调节、KL 散度、软标签主要方法软标签蒸馏、特征蒸馏、自蒸馏优势提升小模型精度,轻量化,泛化好挑战需教师模型,计算成本高典型应用推荐流程先蒸馏 → 再剪枝/量化 → 部署。

2025-12-24 13:00:15 596

原创 深度学习模型量化:从理论到实战

模型量化技术概述 模型量化是将深度学习模型从高精度浮点参数转换为低精度整数的技术,主要包括后训练量化(PTQ)和量化感知训练(QAT)两种方式。PTQ无需重新训练,适合快速部署;QAT通过训练过程模拟量化,精度损失更小但成本更高。量化可显著减小模型体积(FP32→INT8缩小4倍)、提升推理速度(2-4倍)并降低功耗。关键技术包括均匀/非均匀量化、对称/非对称量化等,实际应用中需根据模型类型(LSTM/CNN/Transformer等)选择合适的量化策略。主流框架如PyTorch、TensorFlow和Te

2025-12-23 12:50:31 777

原创 Adagrad优化器:核心思想与实战解析

Adagrad优化算法摘要 Adagrad是一种自适应学习率优化算法,通过为每个参数单独调整学习率来提升训练效率。其核心思想是:频繁更新的参数降低学习率(避免震荡),低频更新的参数提高学习率(加速收敛)。算法通过累积历史梯度平方(G_t)实现自适应调整,公式为:w_t = w_{t-1} - η/√(G_t+ε) ⊙ ∇f(w_{t-1})。 优点: 自动适应不同参数,适合稀疏数据(如NLP任务) 早期收敛快,减少手动调参 缺点: 学习率持续衰减,后期可能停滞 不适合长周期训练 改进方向:Adadelta/

2025-12-23 00:18:30 668

原创 权重衰减 vs L2正则化:优化器下的关键差异

摘要: 权重衰减(Weight Decay)和L2正则化在SGD中效果等价,但在Adam等自适应优化器中表现不同。L2正则化通过修改损失函数添加梯度项,而权重衰减直接在参数更新时进行衰减。由于Adam的自适应学习率会稀释L2正则化的梯度效果,导致其作用减弱,而权重衰减不受影响。因此,推荐使用AdamW优化器(独立权重衰减)而非Adam+L2正则化,以避免正则效果被削弱。PyTorch中应优先选择AdamW并避免手动叠加L2惩罚。

2025-12-22 23:42:11 626

原创 Jupyter 与 Conda 环境:深入理解与最佳实践

Jupyter与Conda环境最佳实践摘要 Jupyter需在目标Conda环境中启动,仅该环境需安装jupyter包,其他环境只需安装ipykernel并注册内核。关键原则: 每个项目创建独立环境 启动Jupyter前激活对应环境(如conda activate env_a) 通过ipykernel注册内核实现多环境切换 避免全局安装Jupyter,保持环境隔离 典型流程:创建环境→激活环境→安装Jupyter+ipykernel→注册内核→启动服务。错误操作会导致内核失效或包导入问题,遵循"一

2025-12-22 21:39:57 918

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除