全排列:从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
公式:全排列数f(n)=n!(定义0!=1),如1,2,3三个元素的全排列为:{1,2,3} {1,3,2} {2,1,3} {2,3,1} {3,1,2} {3,2,1}共3*2*1=6种。
先看代码,我们再细说思路:
package test;
public class TTTT {
public static void perm(char[] arr , int n){
if(n < 0 || n >= arr.length || arr == null)
return;
if(n == arr.length - 1)
System.out.println(new String(arr));
else{
for(int i = n;i < arr.length ; i++){
swap(i,n,arr);
perm(arr,n+1);
swap(i,n,arr);
}
}
}
public static void swap(int begin , int end ,char[] arr){
char temp = arr[begin];
arr[begin] = arr[end];
arr[end] = temp;
}
public static void main(String[] args) {
char[] arr = {'a','b','c','d'};
perm(arr,0);
}
}
遇到递归这种思想解决问题的算法,我们可以从最简单的思路走起,当我们只有两个字母的时候,我们就可以一个for循环交换字母顺序即可,每一次递归都交换俩字母,for循环保证一个数组里的每个字母都会交换,这样递归多次,就实现了全排列。