压缩感知
文章平均质量分 95
This is a new column for discussing Compressed Sensing.
The Mr.Nobody
这个作者很懒,什么都没留下…
展开
-
压缩感知入门④基于总体最小二乘的扰动压缩感知重构算法
经典的压缩感知重构算法是不考虑观测矩阵存在误差的情况的,然而,在实际的使用过程中,这个误差是存在的,他会引起观测矩阵的“失配”引起,最终影响到重构信号的质量。采用总体最小二乘法可以对该误差进行良好的估计,通过优化算法进行一定的约束,使得重构输出信号尽可能接近真实信号。本文提供了针对此类问题的一个样例。原创 2023-06-14 22:04:35 · 6400 阅读 · 2 评论 -
压缩感知入门③基于ADMM的全变分正则化的压缩感知重构算法
本文就基于全变分正则化的压缩感知问题,实现了基于ADMM的重构算法,提供仿真源码原创 2023-05-30 23:06:38 · 7651 阅读 · 17 评论 -
压缩感知入门②信号的稀疏表示和约束等距性
奈奎斯特采样定律告诉我们,在信号采集的过程中,采样频率需要大于带宽的2倍以上,才能够保证不失真地恢复原始信号。但是在许多应用中,例如数字图像和视频处理,奈奎斯特采样频率会非常高,导致采样过程产生大量的数据,这些数据通常需要先进行压缩,才能够进行存储。许多科研人员意识到,很多采集到的数据在存储时都是可以丢弃的,并不会影响人的感官体验。声音信号、图像信号的有损压缩就是一个很好的例子。那么这就产生了一个自然的问题:既然我们明知道采集到的信号有一部分是可以直接丢弃的,为什么还要费劲去采集那些本身就没用的信号呢?原创 2023-02-14 22:08:08 · 6791 阅读 · 0 评论 -
压缩感知入门①从零开始压缩感知
从最优化角度初步认识压缩感知框架原创 2023-01-16 00:41:19 · 6615 阅读 · 0 评论