计算构成三角形的个数

该博客主要介绍了一道编程题,题目要求在二维坐标系中,给定一系列点,计算这些点能构成多少个直角三角形。博主提供了Python代码实现,通过计算每个点与其他点的斜率并利用欧几里得算法找到斜率为整数的比例,从而找出可能的直角三角形,并最终得出总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

二维平面直角坐标系中有N个整形坐标点(x1,y1),(x2,y2),..(xN,yN),任意三个点都可能构成一个三角形,计算构成三角形的个数。

输入描述

输入有两行:
第一行为N. 3 ≤ N ≤ 256
第二行为输入N个双字节整型坐标点,共2N个数据,以空格分隔横纵坐标及不同的点,x1,y1,x2,y2,...,xn,yn,xN,yN

输出描述

输出直角三角形的个数

示例1

输入输出示例仅供调试,后台判断数据一般不包含示例

输入

4
0 0 2 0 1 1 2 2

输出

3

输入

3
0 0 2 0 1 1

输出

1

题目分析

image

Python代码实现

from collections import defaultdict
from math import gcd 
def countTriangles(P, N): 
    mp = defaultdict(lambda:0) 
    ans = 0
    for i in range(0, N): 
        mp.clear() 
        for j in range(i + 1, N): 
            X = P[i][0] - P[j][0] 
            Y = P[i][1] - P[j][1]  
            g = gcd(X, Y) 
            X //= g 
            Y //= g 
            mp[(X, Y)] += 1
        num = N - (i + 1) 
        ans += (num * (num - 1)) // 2
        for j in mp: 
            ans -= (mp[j] * (mp[j] - 1)) // 2  
    return ans 
  
if __name__ == "__main__": 
	N = int(input())
	ls = list(map(int,input().strip().split()))
	P = []
	for i in range(0,2*N,2):
		P.append([ls[i],ls[i+1]])
	print(countTriangles(P, N))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhemgLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值