1325 删除给定值的叶子节点(dfs)

1. 问题描述:

给你一棵以 root 为根的二叉树和一个整数 target ,请你删除所有值为 target 的 叶子节点 。

注意,一旦删除值为 target 的叶子节点,它的父节点就可能变成叶子节点;如果新叶子节点的值恰好也是 target ,那么这个节点也应该被删除。

也就是说,你需要重复此过程直到不能继续删除。

示例 1:

输入:root = [1,2,3,2,null,2,4], target = 2
输出:[1,null,3,null,4]
解释:
上面左边的图中,绿色节点为叶子节点,且它们的值与 target 相同(同为 2 ),它们会被删除,得到中间的图。
有一个新的节点变成了叶子节点且它的值与 target 相同,所以将再次进行删除,从而得到最右边的图

示例 2:

输入:root = [1,3,3,3,2], target = 3
输出:[1,3,null,null,2]

示例 3:

输入:root = [1,2,null,2,null,2], target = 2
输出:[1]
解释:每一步都删除一个绿色的叶子节点(值为 2)

示例 4:

输入:root = [1,1,1], target = 1
输出:[]
示例 5:

输入:root = [1,2,3], target = 1
输出:[1,2,3]

提示:

1 <= target <= 1000
每一棵树最多有 3000 个节点。
每一个节点值的范围是 [1, 1000]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/delete-leaves-with-a-given-value

2. 思路分析:

① 题目其实很好理解,对于树的遍历操作肯定是使用递归来实现的,通过观察题目中的他可以发现我们在递归遍历的时候可以将要删除的节点直接删除,也就是直接将其置为null即可,我们需要使用声明一个有返回值的递归方法,用来返回当前层的节点的值,从题目中的图我们可以根据递归方法的返回值来判断出是否要删除当前节点的左节点或者是右节点,假如即将需要删除当前的左节点那么应该满足当前节点的左节点的值等于target并且当前的左节点应该为叶子节点,对于当前节点的右节点也是同样的道理,其实可以从题目中的图即可观察出这个特点

② 此外还需要注意一个问题是我们最后一个根节点也是可能需要删除的,因为在递归的方法中我们只是删除了当前节点的左节点或者是右节点,但是最后的根节点没有处理,所以在递归方法调用结束需要判断一下当前的根节点是否需要删除即可

3. 代码如下:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode removeLeafNodes(TreeNode root, int target) {
        dfs(root, target);
        if (root.left == null && root.right == null && root.val == target) return null;
        return root;
    }

    private int dfs(TreeNode root, int target) {
        if (root == null) return 0;
        int l = dfs(root.left, target);
        if (l == target && root.left.left == null && root.left.right == null) root.left = null;
        int r = dfs(root.right, target);
        if (r == target && root.right.left == null && root.right.right == null) root.right = null;
        return root.val;
    }
}

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页