1. 问题描述:
给你一个正整数数组 arr ,请你计算所有可能的奇数长度子数组的和。子数组 定义为原数组中的一个连续子序列。请你返回 arr 中 所有奇数长度子数组的和 。
示例 1:
输入:arr = [1,4,2,5,3]
输出:58
解释:所有奇数长度子数组和它们的和为:
[1] = 1
[4] = 4
[2] = 2
[5] = 5
[3] = 3
[1,4,2] = 7
[4,2,5] = 11
[2,5,3] = 10
[1,4,2,5,3] = 15
我们将所有值求和得到 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
示例 2:
输入:arr = [1,2]
输出:3
解释:总共只有 2 个长度为奇数的子数组,[1] 和 [2]。它们的和为 3
示例 2:
输入:arr = [10,11,12]
输出:66
提示:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
2. 思路分析:
① 分析题目可以知道我们是要求解出所有奇数长度的的子数组的和,所以这里涉及到一个范围内的子数组的和,所以比较容易想到的是前缀和的解决方法,我们需要求解出从0到当前位置的前缀和(当前位置的最大长度为数组的长度 + 1),这样我们就可以通过下标相减的方法来求解某个范围的子数组的和,因为是要求解出奇数长度的子数组,所以我们想到使用两层for循环来解决,第一层for循环表示的是子数组的奇数长度(步长为2),第二层for循环是从当前位置开始长度为k的子数组的范围(k为当前的子数组的长度),这样我们可以通过之前得到的前缀和数组通过下标的方式相减就可以得到长度为奇数的子数组的和了
② 而且对于数组边界的确定问题最好的解决方法是写出具体的例子进行简单的分析, 进行debug调试就可以得到具体的范围
③ 除了使用前缀和解决方法之外,在力扣的题解中提供了一种思路比较新颖的解法,主要思路是计算出每一个数字出现的次数,然后将出现的次数与当前数字相乘那么得到的结果就是当前数字在所有的子数组中出现的总和,所以我们只需要将每个数字出现的次数的结果累加起来那么就可以得到最终的结果了,因为是要求解出奇数长度的子数组,所以存在着两种情况(所以这也是一个组合的问题):
奇数个数字 + num + 奇数个数字(当前位置往前取出1,3...数字,当前位置后面取1,3...k个数字)
偶数个数字 + num + 偶数个数字(当前位置往前取出0,2...数字,当前位置后面取0,2..k个数字)
这样最终得到的就是奇数长度的子数组了,如何求解出当前位置的奇数个数字与偶数个数字呢?很自然地想到使用左边范围除以2,右边范围除以2,总体上是这样的,但是需要注意一下边界的处理情况,这里特别要注意当前位置前后都是偶数个数字的情况,其实最简单的方法是写出具体的例子,比如[1,2,3,4,5]分析当遍历到3的时候前面有多少个偶数的情况,后面有多少个偶数的情况,遍历到4的时候也是这样进行分析那么就可以得到正确的个数了,计算出两种情况对应的数字剩下来就是组合的问题了,我们只需要将各自的情况相乘再相加那么就可以得到最终的答案了:
(奇数个数字 * 奇数个数字 + 偶数个数字 * 偶数个数字* arr[i](相乘表示不同情况的组合),力扣题解链接
3. 代码如下:
前缀和:
from typing import List
class Solution:
def sumOddLengthSubarrays(self, arr: List[int]) -> int:
presum = [0] * (len(arr) + 1)
for i in range(1, len(arr) + 1):
presum[i] = presum[i - 1] + arr[i - 1]
res = 0
n = len(arr)
# 步长为2,所以得到的奇数长度序列为1,3,5...
for length in range(1, n + 1, 2):
for i in range(length, n + 1):
res += (presum[i] - presum[i - length])
return res
分析:
from typing import List
class Solution:
def sumOddLengthSubarrays(self, arr: List[int]) -> int:
res, n = 0, len(arr)
for i in range(n):
l, r = i + 1, n - i
left_odd, right_odd = l // 2, r // 2
left_even, right_even = (l + 1) // 2, (r + 1) // 2
res = res + (left_odd * right_odd + left_even * right_even) * arr[i]
return res