1. 问题描述:
编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-10 ^ 9 <= matix[i][j] <= 10 ^ 9
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-10 ^ 9 <= target <= 10 ^ 9
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/search-a-2d-matrix-ii
2. 思路分析:
因为每一行从左往右都是升序的,每一列从上到下也是升序的(不是全部的单调性),所以我们可以使用二分查找的方法解决,除了二分查找的方法之外我们还可以使用一个比较巧妙的方法,也就是每一次从右上角进行搜索,这样可以充分利用每一行与每一列升序的特点,对于当前右上角的元素nums[i][j]与目标值target比较分为三种情况,第一种nums[i][j] == target直接返回True即可,第二种情况nums[i][j] > target说明当前这一列都是不符合条件的,因为当前这一列越往下那么值就是越大的,那么列数减1即可,第三种情况是nums[i][j] < targe说明当前这一行都是不符合条件的,当前这一行越往左那么值就越小,行数减1即可。这样每一次都是可以去除掉不满足的一行或者是一列,时间复杂度为O(m + n),m,n分别是矩阵的行数与列数。
3. 代码如下:
from typing import List
class Solution:
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
if len(matrix) == 0 or len(matrix[0]) == 0: return False
i, j = 0, len(matrix[0]) - 1
while i < len(matrix) and j >= 0:
if matrix[i][j] == target: return True
if matrix[i][j] > target:
j -= 1
else:
i += 1
return False