406 根据身高重建队列 (贪心,二分 + 树状数组优化)

1. 问题描述:

假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面正好有ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

示例 1:

输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。

示例 2:

输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]

提示:
1 <= people.length <= 2000
0 <= hi <= 10 ^ 6
0 <= ki < people.length
题目数据确保队列可以被重建
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/queue-reconstruction-by-height

2. 思路分析:

① 我们可以先根据题目中的例子简单分析一下,画一下图如下图所示,可以知道我们如果先从高度较矮的人考虑那么是可以确定他在n个位置中的具体位置的,如果先从高的人考虑由于高的人前面是可以夹杂矮的人的所以是位置不是唯一的,所以我们应该从高度较矮的开始考虑。但是遇到高度相同的人那么怎么样确定他的具体位置呢?先考虑ki比较大的那个人还是比较小的那个人呢?答案是先考虑ki比较大的那个人,因为先从ki比较大的人可以很好确定他的位置,因为考虑到了身高等于自己的人数,而先考虑ki比较小的话还要考虑与自己身高相同的人所以会很复杂。对于确定的位置我们可以将其标记为1即可,表明当前位置已经确定了。(高的人看不到矮的人)

② 基于①中的思想我们可以先对people按照身高由小到大排序,ki由大到小排序,先确定身高较矮的人的位置,对于当前的位置i,在上图所示的空位中找到比自己身高高的个数大于等于当前ki + 1的位置,也即找到当前位置前面有ki个空位的位置,我们可以使用二分 + 树状数组进行优化,二分是找到中点判断从1到mid的位置中有多少个空位来决定当前的people[i]应该属于哪一个位置,例如上图中一开始的[4, 4]就属于第五个位置,前面有四个位置人的身高是大于等于当前[4, 4]。我们可以在遍历排序之后的people之后确定people[i]的位置,并且将在树状数组中将当前位置标记为1即可。

3. 代码如下:

from typing import List


class Solution:
    # 下面三个方法都是树状数组的模板
    tr = None
    n = 0

    # 返回
    def lowbit(self, x: int):
        return x & -x

    # 在x的位置上加上v
    def add(self, x: int, v: int):
        i = x
        n = self.n
        tr = self.tr
        while i <= n:
            tr[i] += v
            i += self.lowbit(i)

    # 查询[1:x]区间和
    def query(self, x):
        res = 0
        i = x
        tr = self.tr
        while i > 0:
            res += tr[i]
            i -= self.lowbit(i)
        return res

    # 先考虑身高比较较矮的, 再考虑身高较高的, 使用二分 + 树状数组进行优化
    def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:
        n = len(people)
        self.n = n
        self.tr = [0] * (n + 1)
        # 对身高按照升序排列, ki按照降序排列
        people.sort(key=lambda x: (x[0], -x[1]))
        res = [list()] * n
        for p in people:
            h, k = p[0], p[1]
            # 树状数组的下标从1开始所以在二分的时候也要从1开始
            l, r = 1, n
            while l < r:
                mid = l + r >> 1
                # 我们的目标是找到空位的数目使得其大于等于k+ 1
                if mid - self.query(mid) >= k + 1:
                    r = mid
                else:
                    l = mid + 1
            # 标记当前的people[i]在答案的哪一个位置
            res[r - 1] = p
            # 标记当前的位置已经被使用
            self.add(r, 1)
        return res

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
很抱歉,根据提供的引用内容,没有找到关于迪杰斯特拉算法树状数组优化的信息。但是,我可以为您介绍一下迪杰斯特拉算法和树状数组的基本概念和应。 迪杰斯特拉算法,也称为狄克斯特拉算法,是一种用于解决图中最短路径问题的算法。该算法的基本思想是从起点开始,逐扩展到距离起点更远的节点,直到到达终点为止。在扩展的过程中,通过比较不同路径的距离,选择距离最短的路径进行扩展,直到到达终点。 树状数组,也称为二叉索引树,是一种用于高效维护序列前缀和的数据结构。该数据结构可以在O(log n)的时间内完成单点修改和区间查询操作,因此被广泛应用于解决各种算法问题,如逆序对问题、区间最大值/最小值问题等。 虽然迪杰斯特拉算法和树状数组看似没有直接关系,但是在解决某些特定的问题时,两者可以结合使用,以达到更高效的解决方案。例如,在解决带权图最短路径问题时,可以使用迪杰斯特拉算法结合树状数组进行优化,以达到更快的计算速度。 具体来说,可以使用树状数组维护一个优先队列,用于存储当前已经扩展的节点和它们的距离。在每次扩展节点时,可以使用树状数组快速找到距离最小的节点,并将其从队列中删除。这样可以避免使用传统的堆数据结构,从而提高算法的效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值