1. 问题描述:
你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串。空节点则用一对空括号 "()" 表示。而且你需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。
示例 1:
输入: 二叉树: [1,2,3,4]
1
/ \
2 3
/
4
输出: "1(2(4))(3)"
解释: 原本将是“1(2(4)())(3())”,
在你省略所有不必要的空括号对之后,
它将是“1(2(4))(3)”。
示例 2:
输入: 二叉树: [1,2,3,null,4]
1
/ \
2 3
\
4
输出: "1(2()(4))(3)"
解释: 和第一个示例相似,
除了我们不能省略第一个对括号来中断输入和输出之间的一对一映射关系。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/construct-string-from-binary-tree
2. 思路分析:
分析题目可以知道本质上求解的是二叉树的前序遍历过程,根据题目的限制条件我们需要分析出哪一种情况是需要加上括号,可以发现当左子树为空但是右子树不为空或者是左子树不为空的时候那么需要加上括号,因为当左子树为空的情况下但是右子树不为空的时候省略掉括号会造成歧义,因为无法判断当前括号中的内容属于左子树还是右子树,当右子树不为空的时候那么也是需要加上括号的,所以分这两种情况进行讨论即可。
3. 代码如下:
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
# 递归即可
res = ""
def dfs(self, root: TreeNode):
if not root: return
self.res += str(root.val)
# 左子树不为空或者是左子树为空但是右子树不为空那么需要加上括号
if root.left or root.right:
self.res += "("
self.dfs(root.left)
self.res += ")"
# 右子树不为空的时候也需要加上括号
if root.right:
self.res += "("
self.dfs(root.right)
self.res += ")"
def tree2str(self, root: TreeNode) -> str:
self.dfs(root)
return self.res