1. 问题描述:
给你两个整数 n 和 k ,请你构造一个答案列表 answer ,该列表应当包含从 1 到 n 的 n 个不同正整数,并同时满足下述条件:
假设该列表是 answer = [a1, a2, a3, ... , an] ,那么列表 [|a1 - a2|, |a2 - a3|, |a3 - a4|, ... , |an-1 - an|] 中应该有且仅有 k 个不同整数。
返回列表 answer 。如果存在多种答案,只需返回其中任意一种 。
示例 1:
输入:n = 3, k = 1
输出:[1, 2, 3]
解释:[1, 2, 3] 包含 3 个范围在 1-3 的不同整数,并且 [1, 1] 中有且仅有 1 个不同整数:1
示例 2:
输入:n = 3, k = 2
输出:[1, 3, 2]
解释:[1, 3, 2] 包含 3 个范围在 1-3 的不同整数,并且 [2, 1] 中有且仅有 2 个不同整数:1 和 2
提示:
1 <= k < n <= 10 ^ 4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/beautiful-arrangement-ii
2. 思路分析:
这道题目属于构造的问题,思路很难想。我们可以先观察这两种构造方式,分别为:
- 1,2,3,...n,相邻两个数的绝对值只有一种
- 1,n,2,n - 2,3,n - 3,4....相邻两个数的绝对值总共有n种
所以我们可以结合这两种构造方式构造成k个不同的绝对值对应的序列,首先我们可以使用第一种方式构造成前n - k - 1个数字,接下来的k - 1个数字使用第二种方式构造即可,可以得到:
1,2,3,4...n - k - 1,n - k, n,n - k + 1,n - 1....
前面n - k - 1个数字绝对值只有一种,后面的k - 1个数字绝对值有k种,所以总共有k种绝对值。
3. 代码如下:
from typing import List
class Solution:
# 思维题
def constructArray(self, n: int, k: int) -> List[int]:
res = [0] * n
for u in range(n - k - 1):
res[u] = u + 1
i, j = n - k, n
u = n - k - 1
while u < n:
res[u] = i
u += 1
i += 1
if u < n:
res[u] = j
u += 1
j -= 1
return res