667 优美的排列 II(构造)

1. 问题描述:

给你两个整数 n 和 k ,请你构造一个答案列表 answer ,该列表应当包含从 1 到 n 的 n 个不同正整数,并同时满足下述条件:
假设该列表是 answer = [a1, a2, a3, ... , an] ,那么列表 [|a1 - a2|, |a2 - a3|, |a3 - a4|, ... , |an-1 - an|] 中应该有且仅有 k 个不同整数。
返回列表 answer 。如果存在多种答案,只需返回其中任意一种 。

示例 1:

输入:n = 3, k = 1
输出:[1, 2, 3]
解释:[1, 2, 3] 包含 3 个范围在 1-3 的不同整数,并且 [1, 1] 中有且仅有 1 个不同整数:1

示例 2:

输入:n = 3, k = 2
输出:[1, 3, 2]
解释:[1, 3, 2] 包含 3 个范围在 1-3 的不同整数,并且 [2, 1] 中有且仅有 2 个不同整数:1 和 2

提示:

1 <= k < n <= 10 ^ 4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/beautiful-arrangement-ii

2. 思路分析:

这道题目属于构造的问题,思路很难想。我们可以先观察这两种构造方式,分别为:

  • 1,2,3,...n,相邻两个数的绝对值只有一种
  • 1,n,2,n - 2,3,n - 3,4....相邻两个数的绝对值总共有n种

所以我们可以结合这两种构造方式构造成k个不同的绝对值对应的序列,首先我们可以使用第一种方式构造成前n - k - 1个数字,接下来的k - 1个数字使用第二种方式构造即可,可以得到:

1,2,3,4...n - k - 1,n - k, n,n - k + 1,n - 1....

前面n - k - 1个数字绝对值只有一种,后面的k - 1个数字绝对值有k种,所以总共有k种绝对值。

3. 代码如下:

from typing import List


class Solution:
    # 思维题
    def constructArray(self, n: int, k: int) -> List[int]:
        res = [0] * n
        for u in range(n - k - 1):
            res[u] = u + 1
        i, j = n - k, n
        u = n - k - 1
        while u < n:
            res[u] = i
            u += 1
            i += 1
            if u < n:
                res[u] = j
                u += 1
            j -= 1
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值