3 完全背包问题

1. 问题描述: 

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。第 i 种物品的体积是 vi,价值是 wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N,V ≤ 1000
0 < vi,wi ≤ 1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

来源:https://www.acwing.com/problem/content/3/

2. 思路分析:

完全背包问题属于经典的背包问题,对于每一个物品可以选择无限次(在背包容量允许的前提下),属于动态规划中一大类的题目,对于动态规划的题目一般有两个步骤:① 状态表示 ② 状态计算;一开始的时候我们可以定义一个二维数组或者二维列表,其中dp[i][j]表示从前i个物品中选总体积不超过j的最大的价值。怎么样进行状态的计算呢?状态计算对应集合的划分,一般是找最后一个不同点,我们可以根据最后一个物品选择的次数划分为k个子集,经过推导可以得到状态转移方程为:dp[i][j] = max(dp[i - 1][j],dp[i][j - v[i]] + w[i]),可以参照下图中的推导过程,其实我们可以将二维的数组优化为一维数组,只要做等价的变形即可完成优化,我们可以参照状态转移方程,可以发现dp[i - 1][j]其实使用到了上一层i - 1的状态,而dp[i][j - v]使用到的是当前这一层的状态。进入到第二层循环的时候所有的状态j对应的都是上一层i - 1的状态(循环变量j是按顺序遍历的),而进入循环之后j - v小于j所以j - v对应的状态是当前这一层i计算的结果(循环到当前的j之后dp[j - v]已经在当前这一层循环中计算出结果了),所以直接去掉一维就可以完成等价变形,这里需要与零一背包优化的思路做一下区分。

3. 代码如下:

if __name__ == '__main__':
    n, V = map(int, input().split())
    dp = [0] * (V + 1)
    for i in range(n):
        v, w = map(int, input().split())
        for j in range(v, V + 1):
            dp[j] = max(dp[j], dp[j - v] + w)
    print(dp[V])
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值