2155 分组得分最高的所有下标(前缀和 + 后缀和)

该问题涉及数组处理和动态规划,主要目标是找到二进制数组中能最大化分组得分的下标。通过计算每个位置左侧0的总数和右侧1的总数,可以确定最佳分组。解决方案包括使用前缀和和后缀和来存储这些信息,并遍历数组以找到最高得分对应的下标。
摘要由CSDN通过智能技术生成

1. 问题描述:

给你一个下标从 0 开始的二进制数组 nums ,数组长度为 n 。nums 可以按下标 i( 0 <= i <= n )拆分成两个数组(可能为空):numsleft 和 numsright 。numsleft 包含 nums 中从下标 0 到 i - 1 的所有元素(包括 0 和 i - 1 ),而 numsright 包含 nums 中从下标 i 到 n - 1 的所有元素(包括 i 和 n - 1 )。
如果 i == 0 ,numsleft 为空 ,而 numsright 将包含 nums 中的所有元素。
如果 i == n ,numsleft 将包含 nums 中的所有元素,而 numsright 为空 。
下标 i 的分组得分为 numsleft 中 0 的个数和 numsright 中 1 的个数之和 。
返回分组得分最高的所有不同下标 。你可以按任意顺序返回答案。

示例 1:

输入:nums = [0,0,1,0]
输出:[2,4]
解释:按下标分组
- 0 :numsleft 为 [] 。numsright 为 [0,0,1,0] 。得分为 0 + 1 = 1 。
- 1 :numsleft 为 [0] 。numsright 为 [0,1,0] 。得分为 1 + 1 = 2 。
- 2 :numsleft 为 [0,0] 。numsright 为 [1,0] 。得分为 2 + 1 = 3 。
- 3 :numsleft 为 [0,0,1] 。numsright 为 [0] 。得分为 2 + 0 = 2 。
- 4 :numsleft 为 [0,0,1,0] 。numsright 为 [] 。得分为 3 + 0 = 3 。
下标 2 和 4 都可以得到最高的分组得分 3 。
注意,答案 [4,2] 也被视为正确答案。

示例 2:

输入:nums = [0,0,0]
输出:[3]
解释:按下标分组
- 0 :numsleft 为 [] 。numsright 为 [0,0,0] 。得分为 0 + 0 = 0 。
- 1 :numsleft 为 [0] 。numsright 为 [0,0] 。得分为 1 + 0 = 1 。
- 2 :numsleft 为 [0,0] 。numsright 为 [0] 。得分为 2 + 0 = 2 。
- 3 :numsleft 为 [0,0,0] 。numsright 为 [] 。得分为 3 + 0 = 3 。
只有下标 3 可以得到最高的分组得分 3 。

示例 3:

输入:nums = [1,1]
输出:[0]
解释:按下标分组
- 0 :numsleft 为 [] 。numsright 为 [1,1] 。得分为 0 + 2 = 2 。
- 1 :numsleft 为 [1] 。numsright 为 [1] 。得分为 0 + 1 = 1 。
- 2 :numsleft 为 [1,1] 。numsright 为 [] 。得分为 0 + 0 = 0 。
只有下标 0 可以得到最高的分组得分 2 。

提示:

n == nums.length
1 <= n <= 10 ^ 5
nums[i] 为 0 或 1

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/all-divisions-with-the-highest-score-of-a-binary-array/

2. 思路分析:

分析题目可以知道我们需要知道每一个位置i左边0的数目和右边1的数目,所以我们可以使用前缀和和后缀和分别来记录每一个位置的左边0和右边1的数目,声明zeros,one分别记录从0~i-1出现的0的数目和i~n-1出现的1的数目,下标从1开始比较方便,然后枚举每一个位置i,定义一个当前最大值maxv =0,res用来记录答案,如果当前枚举的位置累加的和大于maxv说明需要更新res和maxv,如果相等则将当前下标追加到res后面即可。

3. 代码如下:

go:

package main

import "fmt"

func maxScoreIndices(nums []int) []int {
	n := len(nums)
    // 使用make函数分配内存
	zero, one := make([]int, n+10), make([]int, n+10)
	// 第0和第n+1个位置是哨兵
	for i := 1; i <= n; i++ {
		zero[i] = zero[i-1]
		if nums[i-1] == 0 {
			zero[i] += 1
		}
	}
	for i := n; i >= 1; i-- {
		one[i] = one[i+1]
		if nums[i-1] == 1 {
			one[i] += 1
		}
	}
	max := 0
	var res []int
	for i := 1; i <= n+1; i++ {
		// 判断两种情况
		if zero[i-1]+one[i] > max {
			max = zero[i-1] + one[i]
			res = []int{i - 1}
		} else if zero[i-1]+one[i] == max {
			res = append(res, i-1)
		}
	}
	return res
}

python:

from typing import List


class Solution:
    def maxScoreIndices(self, nums: List[int]) -> List[int]:
        n = len(nums)
        zero, one = [0] * (n + 10), [0] * (n + 10)
        for i in range(1, n + 1):
            zero[i] = zero[i - 1]
            if nums[i - 1] == 0:
                zero[i] += 1
        for i in range(n, 0, -1):
            one[i] = one[i + 1]
            if nums[i - 1] == 1:
                one[i] += 1
        maxv = 0
        res = list()
        for i in range(1, n + 2):
            if zero[i - 1] + one[i] > maxv:
                maxv = zero[i - 1] + one[i]
                res = [i - 1]
            elif zero[i - 1] + one[i] == maxv:
                res.append(i - 1)
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值