交通结构化搜索系列目录
第一章 确定项目开发目标和框架以及项目初期准备
文章目录
前言
在训练深度学习模型的时候,我们经常会对数据做结构化,比如车可以进一步被结构化细分为小汽车、SUV、公交车、货车、房车等子类别。进一步的结构化细分特征能够让某一父类下的特征更好的被区分从而降低互相之间的可能在训练中出现的影响。
在交通出行的行业内,数据结构化有一个很重要的应用就是结构化搜索,即通过做细分的结构化数据,运用目标检测和目标跟踪技术,对不同目标进行属性的识别,比如在监控下一个行人可以被赋予一个独有的id,同时他身上也会相应的识别出很多属性,比如上身穿白色短袖,下身穿黑色短裤,头发是长发还是短发,是否戴眼镜。通过这样精准的将不同属性附加到一个独有id上,可以在后期通过给出关键词的形式来模糊搜索想要搜索的目标。我在一两个月前就有了动手写一个结构化搜索算法的想法,但是空闲时间比较少搁置了一段时间,现在重新启动,本系列文章将会全程带领大家实现一个结构化搜索的demo,放心,代码和数据集将会开源。
一、确定要做的场景
结构化搜索可以应用在很多不同的场景,由于我们的项目是demo性质,所以选择了行人交通这个比较传统的场景。我找了一个经典视频。
二、确定开发目标
确定好场景之后我们需要确定一下这个项目到底需要实现哪些功能