机器学习
文章平均质量分 92
本专栏主要记录学习机器学习算法的笔记,以备自己复习。
ystraw_ah
人生最有价值的时刻,不是最后的功成名就,而是对未来正充满期待与不安。
展开
-
【机器学习】PangRank的c++和python实现
详细讲解视频推荐PageRank的一般公式:R=dMR+1−dn1{R = dMR + \frac {1-d} {n} 1}R=dMR+n1−d1其中d为随机概率([0,1]),一般去0.85,M为基本转移矩阵,1−dn1{\frac {1-d} {n} 1}n1−d1表示完全随机转移矩阵,表示从任意一个节点到任意一个节点的转移概率都是1/n.c++实现代码:/*Function: c++实现PageRank算法Author: ystrawTime: 2020-7-20 13:58*/原创 2020-07-20 16:35:11 · 826 阅读 · 1 评论 -
【机器学习】逻辑回归与正则化
本文记录线性回归的一般步骤,并不会详细介绍原理。视频教程: 第七章Logistic回归和第八章正则化。笔记-原理介绍、公式推导代码1. logistic回归前面介绍过线性回归,线性回归主要是做预测的,而本文介绍的逻辑回归则是做分类,逻辑回归可以处理二分类和多分类问题。在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈;之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的。本文介绍的是二原创 2020-07-09 11:33:23 · 2401 阅读 · 1 评论 -
【机器学习】 线性回归
本文记录线性回归的一般步骤,并不会详细介绍原理。视频教程: 第二章单变量线性回归和第六章多变量线性回归。1. 线性回归:可以简单理解为就是为就是找一条线来拟合我们已有的数据集。数据集一般包括x和y,x如果只是一个数则为单变量线性回归,如果x很多则为多变量线性回归。hθ(x)=θTX=θ0x0+θ1x1+θ2x2+...+θnxn{{{h}_{\theta }}\left( x \right)={{\theta }^{T}}X={{\theta }_{0}}{{x}_{0}}+{{\theta }_{原创 2020-07-05 16:43:26 · 318 阅读 · 0 评论 -
FCM聚类算法(模糊C均值算法)
相关学习链接视频(https://www.bilibili.com/video/BV18J411a7yY?p=1)博客:(https://blog.csdn.net/in_nocence/article/details/78306297)文档:(https://wenku.baidu.com/view/ee968c00eff9aef8941e06a2.html)代码:(https://wenku.baidu.com/view/ee968c00eff9aef8941e06a2.html)上面的视原创 2020-05-21 15:53:01 · 1535 阅读 · 0 评论