【模板】最小生成树
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz
。
输入格式
第一行包含两个整数 N , M N,M N,M,表示该图共有 N N N 个结点和 M M M 条无向边。
接下来 M M M 行每行包含三个整数 X i , Y i , Z i X_i,Y_i,Z_i Xi,Yi,Zi,表示有一条长度为 Z i Z_i Zi 的无向边连接结点 X i , Y i X_i,Y_i Xi,Yi。
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz
。
样例 #1
样例输入 #1
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
样例输出 #1
7
提示
数据规模:
对于 20 % 20\% 20% 的数据, N ≤ 5 N\le 5 N≤5, M ≤ 20 M\le 20 M≤20。
对于 40 % 40\% 40% 的数据, N ≤ 50 N\le 50 N≤50, M ≤ 2500 M\le 2500 M≤2500。
对于 70 % 70\% 70% 的数据, N ≤ 500 N\le 500 N≤500, M ≤ 1 0 4 M\le 10^4 M≤104。
对于 100 % 100\% 100% 的数据: 1 ≤ N ≤ 5000 1\le N\le 5000 1≤N≤5000, 1 ≤ M ≤ 2 × 1 0 5 1\le M\le 2\times 10^5 1≤M≤2×105, 1 ≤ Z i ≤ 1 0 4 1\le Z_i \le 10^4 1≤Zi≤104。
样例解释:
所以最小生成树的总边权为 2 + 2 + 3 = 7 2+2+3=7 2+2+3=7。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
typedef pair<int,int> PII;
const int N=5500;
const int M=400010;
int d[N],st[N];
int h[N],w[M],e[M],ne[M],idx;
int n,m,res;
void add(int a,int b,int c){
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
bool Prime(){
int cnt=0;
priority_queue<PII,vector<PII>,greater<PII>> heap;
heap.push({0,1});
d[1]=0;
while(heap.size()){
auto t=heap.top();
heap.pop();
int dist=t.first,point=t.second;
if(st[point])continue;
cnt++;
res+=dist;
st[point]=true;
for(int i=h[point];~i;i=ne[i]){
int j=e[i],ww=w[i];
if(d[j]>ww){
d[j]=ww;
heap.push({d[j],j});
}
}
}
return cnt==n;
}
int main(){
memset(h,-1,sizeof h);
memset(d,0x3f,sizeof d);
cin>>n>>m;
while(m--){
int x,y,z;cin>>x>>y>>z;
add(x,y,z);
add(y,x,z);
}
if(Prime())cout<<res;
else cout<<"orz";
}