Datawhale AI夏令营---电力需求预测挑战赛

1. 赛题背景

随着全球经济的快速发展和城市化进程的加速,电力系统面临着越来越大的挑战。电力需求的准确预测对于电网的稳定运行、能源的有效管理以及可再生能源的整合至关重要。

2. 赛题任务

给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗。

3. 评审规则

预测结果以均方误差(mean square error)作为评判标准。

4. 读数据

# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np

# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train = pd.read_csv('./data/data283931/train.csv')
# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'train.csv'
test = pd.read_csv('./data/data283931/test.csv')

可以看出主要是根据日标识dt为11-506的来预测1-10天的target电力消耗。

5. 训练营的baseline

# 3. 计算训练数据最近11-20单位时间内对应id的目标均值
target_mean = train[train['dt']<=20].groupby(['id'])['target'].mean().reset_index()

# 4. 将target_mean作为测试集结果进行合并
test = test.merge(target_mean, on=['id'], how='left')

# 5. 保存结果文件到本地
test[['id','dt','target']].to_csv('submit.csv', index=None)

这里简单粗暴的直接使用了距离前十天最近的十天的目标值来进行的预测,直接保存到了测试集的target列,可以得出370分左右的一个成绩。


上面是最基本的baseline方法,下面我们继续进行提分训练,这里考虑到是时序预测的问题,我们首先想到了lightgbm。在时序预测问题中,使用LightGBM进行建模是一个有效的方法。为了进一步利用LightGBM进行时序预测,一般执行以下步骤:

(1) 创建时间特征

(1.1) 从日期时间列提取日期、月份、季度、年份、周几等特征。

(1.2) 使用滑动窗口统计量,如移动平均、移动标准差等

(然而根据前面的数据表格分析,这里的时间直接是从1-506,并没有明显的时间来分析其特征,因此我们没有考虑它,我们这里通过滑动窗口来进行特征工程)

训练营所提供的方法:

(2) 标签滞后特征

将目标变量滞后一定步数来创建新的特征。

(3) 训练和测试集的划分

使用时间序列的最后一部分作为测试集,其余部分作为训练集

(4) LightGBM模型的训练

通过训练营所提供的信息,我们知道:

LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。

LightGBM 框架中还包括随机森林和逻辑回归等模型。通常应用于二分类、多分类和排序等场景。

例如:在个性化商品推荐场景中,通常需要做点击预估模型。使用用户过往的行为(点击、曝光未点击、购买等)作为训练数据,来预测用户点击或购买的概率。根据用户行为和用户属性提取一些特征,包括:

类别特征(Categorical Feature):字符串类型,如性别(男/女)。

数值特征(Numrical Feature):整型或浮点型,如用户活跃度或商品价格等。

物品类型:服饰、玩具和电子等。

GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。

GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT

6. 训练营代码如下:

(6.1) 导入模块

import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

(6.2) 读数据同baseline

(6.3) 进行数据分析

import matplotlib.pyplot as plt
# 不同type类型对应target的柱状图
type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()

从图中可以看出type类型主要分为0,1,2,...,18,走势基本是越往后好点越大,当然也会有特殊情况。

specific_id_df = train[train['id'] == '00037f39cf']
plt.figure(figsize=(10, 5))
plt.plot(specific_id_df['dt'], specific_id_df['target'], marker='o', linestyle='-')
plt.xlabel('DateTime')
plt.ylabel('Target Value')
plt.title("Line Chart of Target for ID '00037f39cf'")
plt.show()

并给出了一个id的11-506天的耗电情况

可以看出会有一些异常点,比如某一天会突然增加。当然训练营的代码主要还是通过滑动窗口来进行特征增加,并不是通过图像分析剔除异常点,当然这个可以作为后续提分的一个点。

(6.4) 特征工程

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

首先,将训练集和测试集进行合并,并进行一个id和dt的一个降序排列。然后,进行向下历史平移,这里主要是通过分组之后平移,这就意味着每个组会分别进行单独平移,而不是在整个data上进行平移。最后,对平移10,11,12天的值在进行平均生成新的特征。同时分割数据集及确定输入特征。

(6.5) 模型训练

def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], 
                      categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred
    
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

这里通过lightgbm进行模型训练,得出最终结果。

大约是259分左右的一个结果,可以看出相比于baseline,会有一个较好的提分。

7. 总结

通过上述提分过程,可以看出不断的去加入新的特征以及好的模型可以有效的去进行分数的提高,然而,由于BML Codelab中的内存有限,我们不能去加入特别多的特征来进行特征工程,可以去找一些效果比较明显的特征来添加,同时,也可以寻求新的模型进行训练,比如一些深度模型Lstm、rnn等,同时,也可以去找一些经典的机器学习模型,比如xgboost,catboost,随机森林等模型来进行一个多种模型的训练来取平均。

  • 24
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值