题目
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1:
输入: N = 10 输出: 9 示例 2:
输入: N = 1234 输出: 1234 示例 3:
输入: N = 332 输出: 299 说明: N 是在 [0, 10^9] 范围内的一个整数。
思路
题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例,如98
,一旦出现strNum[i - 1] > strNum[i]
的情况(非单调递增),首先想让strNum[i - 1]--
,然后strNum[i]
给为9
,这样这个整数就是89
,即小于98
的最大的单调递增整数。
局部最优:遇到strNum[i - 1] > strNum[i]
的情况,让strNum[i - 1]--
,然后strNum[i]
给为9
,可以保证这两位变成最大单调递增整数。
全局最优:得到小于等于N的最大单调递增的整数
但是这里局部推出全局还需要一个遍历顺序,如果是从前往后遍历的话,那332
举例,那么只能把332->329
就结束了,但是如果从后往前遍历的话,就可以332->-329>299
了
所以本题是从后往前遍历,因为可以重复利用上次比较得出的结果
java代码如下:
class Solution {
public int monotoneIncreasingDigits(int n){
String s = String.valueOf(n);//String.valueOf()将基本数据类型转化成String类型,这里将n转化成字符串,比如12转化成“12”
char[] chars = s.toCharArray();//再将字符串转化成字符数组
int start = s.length();
for(int i = s.length() - 2; i >= 0; i--){//从倒数第二个元素开始遍历,每次将后一个和当前元素进行比较
if(chars[i] > chars[i+1]){//如果前一位大于后一位
chars[i]--;
start = i+1;//start记录需要全部修改成9的位置
}
}
for(int i = start; i < s.length(); i++){
chars[i] = '9';
}
return Integer.parseInt(String.valueOf(chars));//Integer.parseInt("123")表示将字符串"123"转化成整数123,String.valueOf(chars)表示把字符数组转化成字符串
}
}