题目
给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。
示例:
输入: “sea”, “eat” 输出: 2 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"
思路
动态规划一:
和不同的子序列相比,相当于就是两个字符串都可以删除了
动规五部曲:
- 确定dp数组
dp[i][j]
:以i-1为结尾的字符串word1,和以j-1为结尾的字符串word2,想要达到相等,所需要删除元素的最少次数 - 确定递推公式
(1)当word1[i - 1]
与word2[j - 1]
相同的时候,dp[i][j] = dp[i - 1][j - 1]
(2)当word1[i - 1]
与word2[j - 1]
不相同的时候,分成三种情况:
①删word1[i - 1]
,最少操作次数为dp[i - 1][j] + 1
②删word2[j - 1]
,最少操作次数为dp[i][j - 1] + 1
③同时删word1[i - 1]
和word2[j - 1]
,操作的最少次数为dp[i - 1][j - 1] + 2
即dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1})
- dp数组初始化
dp[i][0]
:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i
;同理dp[0][j] = j
- 确定遍历顺序:从上到下,从左到右
- 举例推导dp数组
以word1:“sea”,word2:"eat"为例,推导dp数组状态图如下:
java代码如下:
class Solution{
public int minDistance(String word1, String word2){
int len1= word1.length();
int len2= word2.length();
int[][] dp = new int[len1 + 1][len2 +1];
for(int i = 0; i <= len1; i++) dp[i][0] = i;
for(int j = 0; j <= len2; j++) dp[0][j] = j;
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(word1.charAt(i-1) == word2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = Math.min(dp[i-1][j-1] + 2,Math.min(dp[i-1][j] + 1,dp[i][j-1] + 1));
}
}
}
return dp[len1][len2];
}
}
动态规划二:
本题可以转化成最长公共子序列,只要求出两个字符串的最长公共子序列即可
因为除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。
java代码如下:
class Solution{
public int minDistance(String word1,String word2){
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(word1.charAt(i-1) == word2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + 1;
} else{
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
}
}
}
return len1 + len2 - dp[len1][len2] * 2;
}
}